An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and...An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and mechanical properties prediction technology. 3-D thermomechanical coupled finite element models for simulating hot strip rolling have been developed and the distribution of equivalent plastic strain through the thickness direction of the rolled material by CSP rolling was obtained. Thus the distribution of temperature, strain and strain rate through the thickness of the steel stocks, as well as the microstructure evolution during hot rolling of X60 line pipe steel strip has been investigated by using the developed integrated process modelling system. In addition, the determination and optimization of controllable process parameters during CSP hot strip rolling for the Nb-microalloyed X60 line pipe steel have been implemented, and control strategies such as adopting larger pass reduction in the first stand, arranging appropriate pass interval times and proper rolling speed, to reduce or eliminate mixed grain microstructure of Nb microalloyed strip in CSP processing have been proposed.展开更多
EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory...EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory conditions.Similar studies were carried out in higher grade (X-100 and above) line pipe steels with different chemistries,which were processed under simulation of industrial rolling conditions.The twin objectives are (i) to understand the effect of chemistry and processing parameters on the density and dispersion of high angle boundaries,and (ii) to correlate the microstructure and density of high angle boundaries with strength and fracture properties.The present studies confirm that refinement of austenite grain size prior to pancaking,large strain accumulation in austenite conditioning,alloy design with high hardenability and high cooling rates are essential to control high density and uniformity of dispersion of high angle boundaries in the final microstructure in order to achieve high strength,toughness,low DBTT and consistently 100% ductile shear in DWTT in thermo-mechanically rolled higher grade line pipe steels.展开更多
基金Item Sponsored by National Science and Technology Support Program for 11th Five-Year Plan of China (2006BAE03A08)International Science and Technology Cooperation Program(2006DFB72090)
文摘An integrated process modelling system for simulating the microstructure evolution of Nb-microalloyed HSLA steel produced in CSP hot rolling process has been developed on the basis of the microstructure simulation and mechanical properties prediction technology. 3-D thermomechanical coupled finite element models for simulating hot strip rolling have been developed and the distribution of equivalent plastic strain through the thickness direction of the rolled material by CSP rolling was obtained. Thus the distribution of temperature, strain and strain rate through the thickness of the steel stocks, as well as the microstructure evolution during hot rolling of X60 line pipe steel strip has been investigated by using the developed integrated process modelling system. In addition, the determination and optimization of controllable process parameters during CSP hot strip rolling for the Nb-microalloyed X60 line pipe steel have been implemented, and control strategies such as adopting larger pass reduction in the first stand, arranging appropriate pass interval times and proper rolling speed, to reduce or eliminate mixed grain microstructure of Nb microalloyed strip in CSP processing have been proposed.
基金CBMM,BrazilChinese Government scholarship+1 种基金Evraz Inc NA,ReginaNSERC,Canada
文摘EBSD characterization of density and dispersion of high angle boundaries was carried out in niobium microalloyed steels of HTP base chemistry with 0.09 wt % Nb,which were thermo-mechanically processed under laboratory conditions.Similar studies were carried out in higher grade (X-100 and above) line pipe steels with different chemistries,which were processed under simulation of industrial rolling conditions.The twin objectives are (i) to understand the effect of chemistry and processing parameters on the density and dispersion of high angle boundaries,and (ii) to correlate the microstructure and density of high angle boundaries with strength and fracture properties.The present studies confirm that refinement of austenite grain size prior to pancaking,large strain accumulation in austenite conditioning,alloy design with high hardenability and high cooling rates are essential to control high density and uniformity of dispersion of high angle boundaries in the final microstructure in order to achieve high strength,toughness,low DBTT and consistently 100% ductile shear in DWTT in thermo-mechanically rolled higher grade line pipe steels.