A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcati...A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.展开更多
In this paper, a bridge between near-homogeneous and homogeneous vector fields in R 3 is found. By the relationship between homogeneous vector fields and the induced tangent vector fields of two-dimensional manifold S...In this paper, a bridge between near-homogeneous and homogeneous vector fields in R 3 is found. By the relationship between homogeneous vector fields and the induced tangent vector fields of two-dimensional manifold S 2 , we prove the existence of at least 5 isolated closed orbits for a class of n + 1 (n ≥ 2) systems in R 3 , which are located on the five invariant closed cones of the system.展开更多
Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framew...Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.展开更多
Operator self-similar processes, as an extension of self-similar processes, have been studied extensively. In this work, we study limit theorems for functionals of Gaussian vectors. Under some conditions, we determine...Operator self-similar processes, as an extension of self-similar processes, have been studied extensively. In this work, we study limit theorems for functionals of Gaussian vectors. Under some conditions, we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.展开更多
基金This work was supported by the Strategic Research (Grant No. 7000934) from the City University of Hong Kong.
文摘A concrete numerical example of Z6-equivariant planar perturbed Hamiltonian polynomial vector fields of degree 5 having at least 24 limit cycles and the configurations of compound eyes are given by using the bifurcation theory of planar dynamical systems and the method of detection functions. There is reason to conjecture that the Hilbert number H(2k + 1) ? (2k + I)2 - 1 for the perturbed Hamiltonian systems.
基金supported by the National Natural Science Foundation of China (No.10701037, No.10871080 and No.10771081)
文摘In this paper, a bridge between near-homogeneous and homogeneous vector fields in R 3 is found. By the relationship between homogeneous vector fields and the induced tangent vector fields of two-dimensional manifold S 2 , we prove the existence of at least 5 isolated closed orbits for a class of n + 1 (n ≥ 2) systems in R 3 , which are located on the five invariant closed cones of the system.
基金supported by the National Natural Science Foundation of China(10871141)
文摘Let (E,ξ)=ind(En,ξn) be an inductive limit of a sequence (En,ξn)n∈N of locally convex spaces and let every step (En,ξn) be endowed with a partial order by a pointed convex (solid) cone Sn. In the framework of inductive limits of partially ordered locally convex spaces, the notions of lastingly efficient points, lastingly weakly efficient points and lastingly globally properly efficient points are introduced. For several ordering cones, the notion of non-conflict is introduced. Under the requirement that the sequence (Sn)n∈N of ordering cones is non-conflicting, an existence theorem on lastingly weakly efficient points is presented. From this, an existence theorem on lastingly globally properly efficient points is deduced.
文摘Operator self-similar processes, as an extension of self-similar processes, have been studied extensively. In this work, we study limit theorems for functionals of Gaussian vectors. Under some conditions, we determine that the limit of partial sums of functionals of a stationary Gaussian sequence of random vectors is an operator self-similar process.