Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure...Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure mechanism is assumed to be of a composite rupture surface which is composed of an individual wedge in the passive zone or two wedges in both active and passive zones near the mudline, depending on the separation or bonding state at the interface between the cylindrical structure and neighboring soils in the active wedge, and a truncated spherical slip surface at the base of the cylinder when the structure tends to overturn around a point located on the symmetry axis of the structure. The cylindrical structure and soil interaction system under consideration is also numerically analyzed by the finite element method by virtue of the general-purpose FEM software ABAQUS, in which the soil is assumed to obey tie Hill's criterion of yield. Both the failure mechanism assumed and the plastic limit analysis predictions are validated by numerical computations based on FEM. For the K0-consolidated ground of clays typically with anisotropic undrained strength property, it is indicated through a parametric study that limit analysis without consideration of anisotropy of soil overestimates the lateral ultimate bearing capacity of a deeply-embedded cylindrical structure in soft ground in a certain condition.展开更多
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,r展开更多
基金This project is supported bythe National Natural Science Foundation of China (Grant Nos .50579006 ,50639010 and50179006)
文摘Presented in this paper is a three-dimensional plastic limit analysis method of bearing capacity of the deeply-embedded large-diameter cylindrical structure in the cross-anisotmpic soft ground. The most likely failure mechanism is assumed to be of a composite rupture surface which is composed of an individual wedge in the passive zone or two wedges in both active and passive zones near the mudline, depending on the separation or bonding state at the interface between the cylindrical structure and neighboring soils in the active wedge, and a truncated spherical slip surface at the base of the cylinder when the structure tends to overturn around a point located on the symmetry axis of the structure. The cylindrical structure and soil interaction system under consideration is also numerically analyzed by the finite element method by virtue of the general-purpose FEM software ABAQUS, in which the soil is assumed to obey tie Hill's criterion of yield. Both the failure mechanism assumed and the plastic limit analysis predictions are validated by numerical computations based on FEM. For the K0-consolidated ground of clays typically with anisotropic undrained strength property, it is indicated through a parametric study that limit analysis without consideration of anisotropy of soil overestimates the lateral ultimate bearing capacity of a deeply-embedded cylindrical structure in soft ground in a certain condition.
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,r