Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composi...Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.展开更多
We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation.With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 m A/cm;is ...We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation.With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 m A/cm;is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 m A/cm;is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry–Perot resonance enhances the light absorption after adding an Ag mirror.展开更多
先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参...先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参数进行了计算分析。研究表明:缓冲层厚度为2.6μm,通光孔直径Φ=D×0.8/8时,电池有源层具有最大的吸收效率;优化电池的短路电流为25.9225 m A/cm^2,优于其它陷光结构获得的短路电流。展开更多
基金We thank Prof.Cunming Yu and Dr.Xiao Xiao for providing COMSLO simulation.This work was supported by the National Natural Science Funds for Distinguished Young Scholar(No.21725401)the National Key R&D Program of China(No.2017YFA0207800)+1 种基金the 111 project(B14009)the Fundamental Research Funds for the Central Universities.
文摘Efficient light absorption and trapping are of vital importance for the solar water evaporation by hydrogel-based photothermal conversion materials.Conventional strategies are focused on the development of the composition and structure of the hydrogers internal network.In our point of view,the importance of the surface structure of hydrogel has usually been underestimated or ignored.Here inspired by the excellent absorbance and water transportation ability of biological surface structure,the hierarchical structured hydrogel evaporators(HSEs)increased the light absorption,trapping,water transportation and water-air interface,which is the beneficial photothermal conversion and water evaporation.The HSEs showed a rapid evaporation rate of 1.77 kg·m^(-2)·h^(-1)at about 92%energy efficiency under one sun(1 kW·m^(-2)).Furthermore,the superhydrophilic window device was used in this work to collect the condensed water,which avoids the light-blocking caused by the water mist formed by the small droplets and the problem of the droplets stick on the device dropping back to the bulk water.Integrated with the excellent photothermal conversion hydrogel and superhydrophilic window equipment,this work provides efficient evaporation and desalination of hydrogel-based solar evaporators in practical large-scale applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274066,61474115,and 61504138)the National High Technology Research and Development Program of China(Grant No.2014AA032602)
文摘We investigate slanted silicon nanocone hole arrays as light absorbing structures for solar photovoltaics via simulation.With only 1-μm equivalent thickness, a maximum short-circuit current density of 34.9 m A/cm;is obtained. Moreover, by adding an Ag mirror under the whole structure, a short-circuit current density of 37.9 m A/cm;is attained. It is understood that the optical absorption enhancement mainly results from three aspects. First, the silicon nanocone holes provide a highly efficient antireflection effect. Second, after breaking the geometric symmetry, the slanted silicon nanocone hole supports more resonant absorption modes than vertical structures. Third, the Fabry–Perot resonance enhances the light absorption after adding an Ag mirror.
文摘先基于频域有限差分法和a-Si材料的有效吸收波长范围,利用光场分布、通光效率和有源层吸收谱等优化了有源层厚度为300 nm的a-Si电池用光学微腔陷光结构的缓冲层厚度和光学微腔通光孔尺寸,并对电池光电流密度谱、总电流密度和电池输出参数进行了计算分析。研究表明:缓冲层厚度为2.6μm,通光孔直径Φ=D×0.8/8时,电池有源层具有最大的吸收效率;优化电池的短路电流为25.9225 m A/cm^2,优于其它陷光结构获得的短路电流。