The light harvesting chlorophyll a/b-binding protein is one of key proteins in the transformation from light energy to chemical energy. An open reading frame coding precursor protein of cab gene was cloned from the fi...The light harvesting chlorophyll a/b-binding protein is one of key proteins in the transformation from light energy to chemical energy. An open reading frame coding precursor protein of cab gene was cloned from the first strand of bamboo cDNA through RT-PCR methods,and named as cab-PhE1 (cab gene 1 from Phyllostachys edulis EF207229). The sequence analysis showed that the deduced polypeptide was highly homologous to some other CAB proteins from monocotyledon,and the gene belonged to lhcb2 family. Tissue specific expression showed that cab-PhE1 expressed higher in leaf than sheath and stem. The prokaryotic expression vector of cab-PhE1 gene encoding the mature protein was constructed by subcloning the fragment into pET-23 a and was expressed in Escherichia coli induced by IPTG. The molecular weight of the induced protein was about 28 ku,approximate to that of the mature protein. This work is a key to the further research on in vitro reconstitution of light-harvesting Chl a/b complexes.展开更多
The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins(LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle(cp SRP) pa...The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins(LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle(cp SRP) pathway. The cp SRP is composed of a cp SRP43 protein and a cp SRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identified the YGL9 gene that is predicted to encode the probable rice cp SRP43 protein from a rice yellow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cp SRP43, is present in almost all green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcellular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated that YGL9 is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in the ygl9 mutant. These results indicated that YGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.展开更多
文摘The light harvesting chlorophyll a/b-binding protein is one of key proteins in the transformation from light energy to chemical energy. An open reading frame coding precursor protein of cab gene was cloned from the first strand of bamboo cDNA through RT-PCR methods,and named as cab-PhE1 (cab gene 1 from Phyllostachys edulis EF207229). The sequence analysis showed that the deduced polypeptide was highly homologous to some other CAB proteins from monocotyledon,and the gene belonged to lhcb2 family. Tissue specific expression showed that cab-PhE1 expressed higher in leaf than sheath and stem. The prokaryotic expression vector of cab-PhE1 gene encoding the mature protein was constructed by subcloning the fragment into pET-23 a and was expressed in Escherichia coli induced by IPTG. The molecular weight of the induced protein was about 28 ku,approximate to that of the mature protein. This work is a key to the further research on in vitro reconstitution of light-harvesting Chl a/b complexes.
基金supported by the Special Fund for Industry of Ministry of Agriculture of China (201303129)the Fundamental Research Funds for the Central Universities, China (XDJK2013A023)+1 种基金the Key Program of Chongqing, China (cstc2012ggC 80002)the Upgrade Project of the Key Laboratory of Chongqing, China (cstc2014pt-sy80001)
文摘The nuclear-encoded light-harvesting chlorophyll a/b-binding proteins(LHCPs) are specifically translocated from the stroma into the thylakoid membrane through the chloroplast signal recognition particle(cp SRP) pathway. The cp SRP is composed of a cp SRP43 protein and a cp SRP54 protein, and it forms a soluble transit complex with LHCP in the chloroplast stroma. Here, we identified the YGL9 gene that is predicted to encode the probable rice cp SRP43 protein from a rice yellow-green leaf mutant. A phylogenetic tree showed that an important conserved protein family, cp SRP43, is present in almost all green photosynthetic organisms such as higher plants and green algae. Sequence analysis showed that YGL9 comprises a chloroplast transit peptide, three chromodomains and four ankyrin repeats, and the chromodomains and ankyrin repeats are probably involved in protein-protein interactions. Subcellular localization showed that YGL9 is localized in the chloroplast. Expression pattern analysis indicated that YGL9 is mainly expressed in green leaf sheaths and leaves. Quantitative real-time PCR analysis showed that the expression levels of genes associated with pigment metabolism, chloroplast development and photosynthesis were distinctly affected in the ygl9 mutant. These results indicated that YGL9 is possibly involved in pigment metabolism, chloroplast development and photosynthesis in rice.