Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the caps...Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the capsule bag.Although the surface modification and drug loading of intraocular lens(IOLs)have been effective in preventing PCO to some extent,the intraocular safety of anti-proliferative drug application is still a major limitation in clinical application.In this study,we used non-viral gene delivery systems in combination with layer-by-layer(LBL)self-assembly technology,and the modified IOL could effectively prevent the development of PCO by interfering with the EMT process mediated by the platelet-derived growth factor receptor-α(PDGFR-α).Herein,the gene fragments were wrapped by electrostatic conjugation using polyethyleneimine-graft-poly(ethylene glycol)to form gene complexes.Gene complexes were characterized by dynamic light scattering,transmission electron microscopy(TEM)and agarose gel electrophoresis,and evaluated for storage and serum stability.The layer assembly behavior of the IOL surface,changes in optical properties and the release behavior of the gene complexes were characterized using quartz crystal microbalance,UV-vis,contact angle and TEM.In vitro experiments showed that the IOL coating has good bio-compatibility and can achieve the corresponding transfection effect,and the released gene complexes exhibited excellent cell internalization and lysosomal escape behaviors,as well as effective inhibition of PDGFR-αexpression and its mediated EMT process.The early PCO prevention effect and bio-compatibility evaluation of the modified IOL in vivo were evaluated by implantation into animal eyes.This study provides a new strategy for the development of surface modifications of small nucleic acid drugs and non-toxic EMT interference therapies for PCO.展开更多
Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-reso...Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.展开更多
Based on transformation acoustic methodology, we propose an algorithm for designing acoustic non-resonant lens antenna, which is competent to generate multiple directive beams that are pointing at the desired directio...Based on transformation acoustic methodology, we propose an algorithm for designing acoustic non-resonant lens antenna, which is competent to generate multiple directive beams that are pointing at the desired direction.Unattainable with previous works, the present approach is capable of adjusting the directivity of each radiated beam individually, which is of the utmost importance in several acoustic applications such as in sonar systems. A linear transformation function is intentionally used for eliminating the inhomogeneity of the obtained materials and to pave the way towards more general acoustic patterns. Several numerical simulations are performed to show the capability of the proposed method in manipulating the acoustic waves. To authenticate the concept,a structure that can generate four beams with different directivities is realized with non-resonant meta-fluid bi-layered structure through effective medium theory.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation(LR23H180001)the Key Scientific and Technological Innovation Projects in Wenzhou(ZY2021002)+1 种基金Medical&Health Technology Program of Zhejiang Province(2022RC051)the Zhejiang Science and Technology Program of Traditional Chinese Medicine(2022ZB220).
文摘Posterior capsule opacification(PCO),the most common complication after cataract surgery,is caused by the proliferation,migration and epithelial-mesenchymal transition(EMT)of residual lens epithelial cells in the capsule bag.Although the surface modification and drug loading of intraocular lens(IOLs)have been effective in preventing PCO to some extent,the intraocular safety of anti-proliferative drug application is still a major limitation in clinical application.In this study,we used non-viral gene delivery systems in combination with layer-by-layer(LBL)self-assembly technology,and the modified IOL could effectively prevent the development of PCO by interfering with the EMT process mediated by the platelet-derived growth factor receptor-α(PDGFR-α).Herein,the gene fragments were wrapped by electrostatic conjugation using polyethyleneimine-graft-poly(ethylene glycol)to form gene complexes.Gene complexes were characterized by dynamic light scattering,transmission electron microscopy(TEM)and agarose gel electrophoresis,and evaluated for storage and serum stability.The layer assembly behavior of the IOL surface,changes in optical properties and the release behavior of the gene complexes were characterized using quartz crystal microbalance,UV-vis,contact angle and TEM.In vitro experiments showed that the IOL coating has good bio-compatibility and can achieve the corresponding transfection effect,and the released gene complexes exhibited excellent cell internalization and lysosomal escape behaviors,as well as effective inhibition of PDGFR-αexpression and its mediated EMT process.The early PCO prevention effect and bio-compatibility evaluation of the modified IOL in vivo were evaluated by implantation into animal eyes.This study provides a new strategy for the development of surface modifications of small nucleic acid drugs and non-toxic EMT interference therapies for PCO.
基金Project supported by the National Natural Science Foundation of China (Grant No. 92050102)the National Key Research and Development Program of China (Grant No. 2020YFA0710100)the Fundamental Research Funds for Central Universities, China (Grant Nos. 20720200074, 20720220134, 202006310051, and 20720220033)。
文摘Super-resolution imaging is vital for optical applications, such as high capacity information transmission, real-time bio-molecular imaging, and nanolithography. In recent years, technologies and methods of super-resolution imaging have attracted much attention. Different kinds of novel lenses, from the superlens to the super-oscillatory lens, have been designed and fabricated to break through the diffraction limit. However, the effect of the super-resolution imaging in these lenses is not satisfactory due to intrinsic loss, aberration, large sidebands, and so on. Moreover, these lenses also cannot realize multiple super-resolution imaging. In this research, we introduce the solid immersion mechanism to Mikaelian lens(ML) for multiple super-resolution imaging. The effect is robust and valid for broadband frequencies. Based on conformal transformation optics as a bridge linking the solid immersion ML and generalized Maxwell's fish-eye lens(GMFEL), we also discovered the effect of multiple super-resolution imaging in the solid immersion GMFEL.
文摘Based on transformation acoustic methodology, we propose an algorithm for designing acoustic non-resonant lens antenna, which is competent to generate multiple directive beams that are pointing at the desired direction.Unattainable with previous works, the present approach is capable of adjusting the directivity of each radiated beam individually, which is of the utmost importance in several acoustic applications such as in sonar systems. A linear transformation function is intentionally used for eliminating the inhomogeneity of the obtained materials and to pave the way towards more general acoustic patterns. Several numerical simulations are performed to show the capability of the proposed method in manipulating the acoustic waves. To authenticate the concept,a structure that can generate four beams with different directivities is realized with non-resonant meta-fluid bi-layered structure through effective medium theory.