Experiments were conducted to characterize forced hydraulic jumps in stilling basins for enforced cases due to tail water level or dam site arrangement and construction. The case with a single tall sill was simulated ...Experiments were conducted to characterize forced hydraulic jumps in stilling basins for enforced cases due to tail water level or dam site arrangement and construction. The case with a single tall sill was simulated in a horizontal flume downstream of a sluice gate. Results of experiments are compared with the classical hydraulic jump, and significant effect of tall sill on dissipation of energy in shorter distance was confirmed. Furthermore, the generated jumps were classified based on the ratio of sill height to basin length, and a simple design criterion was proposed to estimate the basin length for a desired jump and particular inflow.展开更多
A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the ...A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the jump occurs and where its length is measured, so the data must be obtained with direct measurements in a laboratory and through empiric equations. This work presents the results of the generated hydraulic jumps and the measure of its length in a series of tests, where we input different flow rates in a transportable open channel hydraulic with a constant gate opening “a” and a slope of S = 0.0035, in the Engineering Faculty Research Centre of the Autonomous University of Chiapas. We also present the experimental method to generate a hydraulic jump, the measure of its length and a comparison with seven empirical equations, including the Sieñchi equation used in H-Canales, the most used software for hydraulic channels design in Latin America. The results show that the calculus of L with the proposed equation has a mean squared error (MSE) of 0.1337, a Bias of -0.0049, a model efficiency (ME) of 0.9991 and a determination coefficient (R2) of 0.9993 when compared with the experimental model. Meanwhile, the comparison of L calculated with the Sieñchi equation versus the experimental model resulted in a MSE of 0.1741, a bias of -0.0437, a ME of 0.9984 and a R2 of 0.9997. Both equations are highly recommended to estimate L in rectangular channels under the conditions presented in this paper, thus, the proposed equation can be applied if??y . Finally, it must be stated that we also proved that the Pavlosky equation is comparable in precision and accuracy concerning to proposed equation and Sieñchi equation.展开更多
应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方...应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方程,使用压力隐式算子分裂PISO(Pressure-Implicit with Splitting of Operators)算法耦合求解速度与压力。模拟结果显示:梯形断面波浪形底板消力池中水跃的自由液面的形状、位置和水跃尺寸等模拟结果与实验值吻合较好;水跃区纵断面的流线、流速和紊动动能分布规律近似于矩形断面消力池,表明梯形断面波浪形底板消力池自由水跃的水力特性与矩形断面相似,并且矩形断面波浪形底板自由水跃的经验公式可以应用于梯形断面波浪形底板消力池的自由水跃。研究结果对消力池工程设计有一定的参考价值。展开更多
基金the Chamran University of Ahwaz,Jundishapur University of Technology,and the Centre of Shahid Excellence on Operation Management of Irrigation and Drainage Networks for financial support and facilitation of the experiments
文摘Experiments were conducted to characterize forced hydraulic jumps in stilling basins for enforced cases due to tail water level or dam site arrangement and construction. The case with a single tall sill was simulated in a horizontal flume downstream of a sluice gate. Results of experiments are compared with the classical hydraulic jump, and significant effect of tall sill on dissipation of energy in shorter distance was confirmed. Furthermore, the generated jumps were classified based on the ratio of sill height to basin length, and a simple design criterion was proposed to estimate the basin length for a desired jump and particular inflow.
文摘A hydraulic jump is a localized phenomenon that generates on an open hydraulic channel;however, its mathematical demonstration is not possible in the turbulent area of the phenomenon, especially in the area where the jump occurs and where its length is measured, so the data must be obtained with direct measurements in a laboratory and through empiric equations. This work presents the results of the generated hydraulic jumps and the measure of its length in a series of tests, where we input different flow rates in a transportable open channel hydraulic with a constant gate opening “a” and a slope of S = 0.0035, in the Engineering Faculty Research Centre of the Autonomous University of Chiapas. We also present the experimental method to generate a hydraulic jump, the measure of its length and a comparison with seven empirical equations, including the Sieñchi equation used in H-Canales, the most used software for hydraulic channels design in Latin America. The results show that the calculus of L with the proposed equation has a mean squared error (MSE) of 0.1337, a Bias of -0.0049, a model efficiency (ME) of 0.9991 and a determination coefficient (R2) of 0.9993 when compared with the experimental model. Meanwhile, the comparison of L calculated with the Sieñchi equation versus the experimental model resulted in a MSE of 0.1741, a bias of -0.0437, a ME of 0.9984 and a R2 of 0.9997. Both equations are highly recommended to estimate L in rectangular channels under the conditions presented in this paper, thus, the proposed equation can be applied if??y . Finally, it must be stated that we also proved that the Pavlosky equation is comparable in precision and accuracy concerning to proposed equation and Sieñchi equation.
文摘应用动量方程推导了梯形断面波浪形底板消力池自由水跃的共轭水深计算公式,采用VOF(volume of fluid)方法追踪自由液面,模拟了三维梯形断面波浪形底板消力池自由水跃,辅以RNG(重整化群)湍流模型封闭时均流方程,选用有限体积法离散微分方程,使用压力隐式算子分裂PISO(Pressure-Implicit with Splitting of Operators)算法耦合求解速度与压力。模拟结果显示:梯形断面波浪形底板消力池中水跃的自由液面的形状、位置和水跃尺寸等模拟结果与实验值吻合较好;水跃区纵断面的流线、流速和紊动动能分布规律近似于矩形断面消力池,表明梯形断面波浪形底板消力池自由水跃的水力特性与矩形断面相似,并且矩形断面波浪形底板自由水跃的经验公式可以应用于梯形断面波浪形底板消力池的自由水跃。研究结果对消力池工程设计有一定的参考价值。