为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的...为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的抗干扰性。理论分析和仿真实验表明该算法在高低信噪比时均具有较快的收敛速度和跟踪速度以及较小的稳态误差和稳态失调,并且在低信噪比时该算法的收敛性、跟踪性、稳态性均优于其他多种变步长算法。展开更多
针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结...针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结果表明,对数函数改进的LMS算法比基于反正切函数改进的LMS算法具有近似相同的稳态误差性能,然而本文算法收敛更快,速度平均提高1.5倍.并且比基于双曲正切函数改进的LMS算法中的稳态误差平均降低0.5倍,同时收敛速度平均提高1.0倍.展开更多
最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新...最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS,DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。展开更多
提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个...提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。展开更多
针对现有的基于双曲正切函数变步长LMS(least mean square)算法的谐波电流检测仍存在稳态误差和收敛速度不能同时满足要求的问题,分析了一种基于双曲正切函数变步长LMS算法改进的变步长算法,利用误差的时间均值估计建立步长与误差之间...针对现有的基于双曲正切函数变步长LMS(least mean square)算法的谐波电流检测仍存在稳态误差和收敛速度不能同时满足要求的问题,分析了一种基于双曲正切函数变步长LMS算法改进的变步长算法,利用误差的时间均值估计建立步长与误差之间的新型双曲正切函数关系以控制步长的更新,降低稳态误差,提高算法的检测精度。同时,对权值采用2次迭代更新,将2次迭代的结果作为新的权值,以加快权值的更新速度,提高算法的收敛速度。该算法具有较高的检测精度的同时还有较快的响应速度。Matlab/Simulink的仿真结果证明了该算法用于谐波电流检测具有很好的效果。展开更多
文摘为了改进现有的变步长最小均方误差(least mean square,LMS)算法在低信噪比时性能较差的缺陷,提出了一种基于改进的双曲正切函数的变步长LMS算法,从理论分析和仿真实验两方面讨论了引入参数对算法收敛性、跟踪性、稳定性的影响及算法的抗干扰性。理论分析和仿真实验表明该算法在高低信噪比时均具有较快的收敛速度和跟踪速度以及较小的稳态误差和稳态失调,并且在低信噪比时该算法的收敛性、跟踪性、稳态性均优于其他多种变步长算法。
文摘针对固定步长最小均方(LMS,least mean square)算法以及变步长LMS算法在收敛速度与稳态误差性能方面的不足,本文提出了一种新的基于对数函数改进的LMS算法.由于该算法中不涉及指数的运算,使得算法的计算量大大下降,收敛速度更快.仿真结果表明,对数函数改进的LMS算法比基于反正切函数改进的LMS算法具有近似相同的稳态误差性能,然而本文算法收敛更快,速度平均提高1.5倍.并且比基于双曲正切函数改进的LMS算法中的稳态误差平均降低0.5倍,同时收敛速度平均提高1.0倍.
文摘最小均方(Least Mean Square,LMS)算法的更新方向是对最速下降方向的估计,其收敛速度也受到最速下降法的约束。为了摆脱该约束,该文在对LMS算法分析的基础上,提出一种针对LMS算法的分块方向优化方法。该方法通过分析误差信号来选择更新向量,使得算法的更新方向尽可能接近Newton方向。基于此方法,给出一种方向优化LMS(Direction Optimization LMS,DOLMS)算法,并推广到变步长DOLMS算法。理论分析与仿真结果表明,该方法与传统分块LMS算法相比,有更快的收敛速度和更小的计算复杂度。
文摘提出了一种新的变步长算法,并将该算法用于水声信道均衡。该算法克服改进归一化最小均方(developed normanized least mean square,XENLMS)算法依赖固定能量参数λ的局限性,遵循变步长算法的步长调整原则在XENLMS算法的基础上引入一个自适应混合能量参数λk,改善算法收敛速度和鲁棒性。首先通过仿真分析变步长算法中的3个固定参数α,β,μ的取值范围及对算法收敛性能的影响;并在两种典型的水声信道环境下,采用两种调制信号对算法的收敛性能进行计算机仿真,结果显示,新算法的收敛速度明显快于XENLMS算法和已有的变步长算法,收敛性能接近递归最小二乘(recursive least square,RLS)算法的最优性能,但计算复杂度远小于RLS算法。最后,木兰湖试验验证了带判决反馈均衡器(decision feedback equalization,DFE)结构的新算法具有较好的克服多径效应和多普勒频移补偿的能力,相比LMS-DFE提高了一个数量级。
文摘针对现有的基于双曲正切函数变步长LMS(least mean square)算法的谐波电流检测仍存在稳态误差和收敛速度不能同时满足要求的问题,分析了一种基于双曲正切函数变步长LMS算法改进的变步长算法,利用误差的时间均值估计建立步长与误差之间的新型双曲正切函数关系以控制步长的更新,降低稳态误差,提高算法的检测精度。同时,对权值采用2次迭代更新,将2次迭代的结果作为新的权值,以加快权值的更新速度,提高算法的收敛速度。该算法具有较高的检测精度的同时还有较快的响应速度。Matlab/Simulink的仿真结果证明了该算法用于谐波电流检测具有很好的效果。