High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. T...High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work,we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential(DLP) for high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C is fitted with the prediction error in energy and force being 9.4 me V/atom and 217 me V/?, respectively. The reliability and generality of the DLP are affirmed,since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC(TM = Ti, Zr, Hf, Nb and Ta). Lattice constants(increase from 4.5707 ? to 4.6727 ?), thermal expansion coefficients(increase from 7.85×10-6 K^(-1) to 10.58×10-6 K^(-1)), phonon thermal conductivities(decrease from 2.02 W·m-1·K^(-1) to 0.95 W·m-1·K^(-1)), and elastic properties of high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C in temperature ranging from 0°C to 2400°C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.展开更多
High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical...High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical properties of high entropy diborides is still lacking unit now.In this work,variations of thermal and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) with respect to temperature were predicted by molecular dynamics simulations.Firstly,a deep learning potential for Ti-Zr-Hf-Nb-Ta-B diboride system was fitted with its prediction error in energy and force respectively being 9.2 meV/atom and 208 meV/A,in comparison with first-principles calculations.Then,temperature dependent lattice constants,anisotropic thermal expansions,anisotropic phonon thermal conductivities,and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) from 0℃to 2400℃were evaluated,where the predicted room temperature values agree well with experimental measurements.In addition,intrinsic lattice distortions of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) were analyzed by displacements of atoms from their ideal positions,which are in an order of 10^(-3) A and one order of magnitude smaller than those in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.It indicates that lattice distortions in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) is not so severe as expected.With the new paradigm of machine learning potential,deep insight into high entropy materials can be achieved in the future,since the chemical and structural complexly in high entropy materials can be well handled by machine learning potential.展开更多
To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and be...To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and been widely applied;i.e.machine learning potentials(MLPs).One recently developed type of MLP is the deep potential(DP)method.In this review,we provide an introduction to DP methods in computational materials science.The theory underlying the DP method is presented along with a step-by-step introduction to their development and use.We also review materials applications of DPs in a wide range of materials systems.The DP Library provides a platform for the development of DPs and a database of extant DPs.We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.展开更多
Nanoparticles,distinguished by their unique chemical and physical properties,have emerged as focal points within the realm of materials science.Traditional theoretical approaches for atomic simulations mainly include ...Nanoparticles,distinguished by their unique chemical and physical properties,have emerged as focal points within the realm of materials science.Traditional theoretical approaches for atomic simulations mainly include empirical force field and ab initio simulations,with the former offering efficiency but limited reliability,and the latter providing accuracy but restricted to systems of relatively small sizes.Herein,we propose a systematic strategy and automated workflow designed for collecting a diverse types of atomic local environments within a training dataset.This includes small nanoclusters,nanoparticles,as well as surface and bulk systems with periodic boundary conditions.The objective is to construct a machine learning potential tailored for pure metal nanoparticle simulations of varying sizes.Through rigorous validation,we have shown that our trained machine learning potential is capable of effectively driving molecular dynamics simulations of nanoparticles across a wide temperature range,especially within the nanoscale regime.Remarkably,this is achieved while preserving the accuracy typically associated with ab initio methods.展开更多
So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for ...So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for simulating radiation damage in body-centered cubic tungsten by employing deep potential, a neural network-based deep learning model for representing the potential energy surface. The resulting potential predicts a variety of physical properties consistent with first-principles calculations, including phonon spectrum, thermal expansion, generalized stacking fault energies, energetics of free surfaces, point defects, vacancy clusters, and prismatic dislocation loops. Specifically, we investigated the elasticity-related properties of prismatic dislocation loops, i.e., their dipole tensors, relaxation volumes, and elastic interaction energies. This potential is found to predict the maximal elastic interaction energy between two 1/2 <1 1 1> loops better than previous potentials, with a relative error of only 7.6%. The predicted threshold displacement energies are in reasonable agreement with experimental results, with an average of 128 eV. The efficiency of the present potential is also comparable to the tabulated gaussian approximation potentials and modified embedded atom method potentials, meanwhile, can be further accelerated by graphical processing units. Extensive benchmark tests indicate that this potential has a relatively good balance between accuracy, transferability, and efficiency.展开更多
Can physical concepts and laws emerge in a neural network as it learns to predict the observation data of physical systems? As a benchmark and a proof-of-principle study of this possibility, here we show an introspect...Can physical concepts and laws emerge in a neural network as it learns to predict the observation data of physical systems? As a benchmark and a proof-of-principle study of this possibility, here we show an introspective learning architecture that can automatically develop the concept of the quantum wave function and discover the Schr?dinger equation from simulated experimental data of the potential-todensity mappings of a quantum particle. This introspective learning architecture contains a machine translator to perform the potential to density mapping, and a knowledge distiller auto-encoder to extract the essential information and its update law from the hidden states of the translator, which turns out to be the quantum wave function and the Schr?dinger equation. We envision that our introspective learning architecture can enable machine learning to discover new physics in the future.展开更多
基金supported financially by the National Natural Science Foundation of China(Nos.51672064 and No.U1435206)。
文摘High entropy materials(HEMs, e.g. high entropy alloys, high entropy ceramics) have gained increasing interests due to the possibility that they can provide challenge properties unattainable by traditional materials. Though a large number of HEMs have emerged, there is still in lack of theoretical predictions and simulations on HEMs, which is probably caused by the chemical complexity of HEMs. In this work,we demonstrate that the machine learning potentials developed in recent years can overcome the complexity of HEMs, and serve as powerful theoretical tools to simulate HEMs. A deep learning potential(DLP) for high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C is fitted with the prediction error in energy and force being 9.4 me V/atom and 217 me V/?, respectively. The reliability and generality of the DLP are affirmed,since it can accurately predict lattice parameters and elastic constants of mono-phase carbides TMC(TM = Ti, Zr, Hf, Nb and Ta). Lattice constants(increase from 4.5707 ? to 4.6727 ?), thermal expansion coefficients(increase from 7.85×10-6 K^(-1) to 10.58×10-6 K^(-1)), phonon thermal conductivities(decrease from 2.02 W·m-1·K^(-1) to 0.95 W·m-1·K^(-1)), and elastic properties of high entropy(Zr(0.2) Hf(0.2) Ti(0.2) Nb(0.2) Ta(0.2))C in temperature ranging from 0°C to 2400°C are predicted by molecular dynamics simulations. The predicted room temperature properties agree well with experimental measurements, indicating the high accuracy of the DLP. With introducing of machine learning potentials, many problems that are intractable by traditional methods can be handled now. It is hopeful that deep insight into HEMs can be obtained in the future by such powerful methods.
基金supported by Natural Sciences Foundation of China under Grant No.51972089 and No.51672064。
文摘High entropy diborides are new categories of ultra-high temperature ceramics,which are believed promising candidates for applications in hypersonic vehicles.However,knowledge on high temperature thermal and mechanical properties of high entropy diborides is still lacking unit now.In this work,variations of thermal and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) with respect to temperature were predicted by molecular dynamics simulations.Firstly,a deep learning potential for Ti-Zr-Hf-Nb-Ta-B diboride system was fitted with its prediction error in energy and force respectively being 9.2 meV/atom and 208 meV/A,in comparison with first-principles calculations.Then,temperature dependent lattice constants,anisotropic thermal expansions,anisotropic phonon thermal conductivities,and elastic properties of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) from 0℃to 2400℃were evaluated,where the predicted room temperature values agree well with experimental measurements.In addition,intrinsic lattice distortions of(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) were analyzed by displacements of atoms from their ideal positions,which are in an order of 10^(-3) A and one order of magnitude smaller than those in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.It indicates that lattice distortions in(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))B_(2) is not so severe as expected.With the new paradigm of machine learning potential,deep insight into high entropy materials can be achieved in the future,since the chemical and structural complexly in high entropy materials can be well handled by machine learning potential.
基金T W and D J S gratefully acknowledge the support of the Research Grants Council,Hong Kong SAR,through the Collaborative Research Fund Project No.8730054The work of H W is supported by the National Science Foundation of China under Grant Nos.11871110 and 12122103The work of W E is supported in part by a gift from iFlytek to Princeton University。
文摘To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and been widely applied;i.e.machine learning potentials(MLPs).One recently developed type of MLP is the deep potential(DP)method.In this review,we provide an introduction to DP methods in computational materials science.The theory underlying the DP method is presented along with a step-by-step introduction to their development and use.We also review materials applications of DPs in a wide range of materials systems.The DP Library provides a platform for the development of DPs and a database of extant DPs.We discuss the accuracy and efficiency of DPs compared with ab initio methods and empirical potentials.
基金supported by the National Science Fund for Distinguished Young Scholars(22225302)the National Natural Science Foundation of China(92161113,21991151,21991150 and 22021001)+2 种基金the Fundamental Research Funds for the Central Universities(20720220008,20720220009 and 20720220010)the Laboratory of AI for Electrochemistry(AI4EC)IKKEM(RD2023100101 and RD2022070501)
文摘Nanoparticles,distinguished by their unique chemical and physical properties,have emerged as focal points within the realm of materials science.Traditional theoretical approaches for atomic simulations mainly include empirical force field and ab initio simulations,with the former offering efficiency but limited reliability,and the latter providing accuracy but restricted to systems of relatively small sizes.Herein,we propose a systematic strategy and automated workflow designed for collecting a diverse types of atomic local environments within a training dataset.This includes small nanoclusters,nanoparticles,as well as surface and bulk systems with periodic boundary conditions.The objective is to construct a machine learning potential tailored for pure metal nanoparticle simulations of varying sizes.Through rigorous validation,we have shown that our trained machine learning potential is capable of effectively driving molecular dynamics simulations of nanoparticles across a wide temperature range,especially within the nanoscale regime.Remarkably,this is achieved while preserving the accuracy typically associated with ab initio methods.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE03110000)the National Natural Science Foundation of China(Nos.52171084 and 12192282)the Foundation of President of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Nos.YZJJQY202203 and BJPY2021A05).
文摘So far, it has been a challenge for existing interatomic potentials to accurately describe a wide range of physical properties and maintain reasonable efficiency. In this work, we develop an interatomic potential for simulating radiation damage in body-centered cubic tungsten by employing deep potential, a neural network-based deep learning model for representing the potential energy surface. The resulting potential predicts a variety of physical properties consistent with first-principles calculations, including phonon spectrum, thermal expansion, generalized stacking fault energies, energetics of free surfaces, point defects, vacancy clusters, and prismatic dislocation loops. Specifically, we investigated the elasticity-related properties of prismatic dislocation loops, i.e., their dipole tensors, relaxation volumes, and elastic interaction energies. This potential is found to predict the maximal elastic interaction energy between two 1/2 <1 1 1> loops better than previous potentials, with a relative error of only 7.6%. The predicted threshold displacement energies are in reasonable agreement with experimental results, with an average of 128 eV. The efficiency of the present potential is also comparable to the tabulated gaussian approximation potentials and modified embedded atom method potentials, meanwhile, can be further accelerated by graphical processing units. Extensive benchmark tests indicate that this potential has a relatively good balance between accuracy, transferability, and efficiency.
基金financially supported by the National Key Research and Development Program of China (2016YFA0301600)the National Natural Science Foundation of China (11734010)the support of the China Scholarship Council
文摘Can physical concepts and laws emerge in a neural network as it learns to predict the observation data of physical systems? As a benchmark and a proof-of-principle study of this possibility, here we show an introspective learning architecture that can automatically develop the concept of the quantum wave function and discover the Schr?dinger equation from simulated experimental data of the potential-todensity mappings of a quantum particle. This introspective learning architecture contains a machine translator to perform the potential to density mapping, and a knowledge distiller auto-encoder to extract the essential information and its update law from the hidden states of the translator, which turns out to be the quantum wave function and the Schr?dinger equation. We envision that our introspective learning architecture can enable machine learning to discover new physics in the future.