期刊文献+
共找到6,529篇文章
< 1 2 250 >
每页显示 20 50 100
神经网络七十年:回顾与展望 被引量:364
1
作者 焦李成 杨淑媛 +2 位作者 刘芳 王士刚 冯志玺 《计算机学报》 EI CSCD 北大核心 2016年第8期1697-1716,共20页
作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具.在七十年的发展历程中,神经网络曾历经质疑、批判与冷落,同时也几度... 作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具.在七十年的发展历程中,神经网络曾历经质疑、批判与冷落,同时也几度繁荣并取得了许多瞩目的成就.从20世纪40年代的M-P神经元和Hebb学习规则,到50年代的Hodykin-Huxley方程、感知器模型与自适应滤波器,再到60年代的自组织映射网络、神经认知机、自适应共振网络,许多神经计算模型都发展成为信号处理、计算机视觉、自然语言处理与优化计算等领域的经典方法,为该领域带来了里程碑式的影响.目前,模拟人脑复杂的层次化认知特点的深度学习已经成为类脑智能中的一个重要研究方向.通过增加网络层数所构造的"深层神经网络"使机器能够获得"抽象概念"能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮.文中回顾了神经网络的发展历程,综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向. 展开更多
关键词 类脑智能 神经网络 深度学习 大数据 并行计算 机器学习
下载PDF
基于深度学习的表面缺陷检测方法综述 被引量:166
2
作者 陶显 侯伟 徐德 《自动化学报》 EI CAS CSCD 北大核心 2021年第5期1017-1034,共18页
近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一... 近年来,基于深度学习的表面缺陷检测技术广泛应用在各种工业场景中.本文对近年来基于深度学习的表面缺陷检测方法进行了梳理,根据数据标签的不同将其分为全监督学习模型方法、无监督学习模型方法和其他方法三大类,并对各种典型方法进一步细分归类和对比分析,总结了每种方法的优缺点和应用场景.本文探讨了表面缺陷检测中三个关键问题,介绍了工业表面缺陷常用数据集.最后,对表面缺陷检测的未来发展趋势进行了展望. 展开更多
关键词 深度学习 表面缺陷检测 机器视觉 卷积神经网络
下载PDF
关于深度学习的综述与讨论 被引量:142
3
作者 胡越 罗东阳 +2 位作者 花奎 路海明 张学工 《智能系统学报》 CSCD 北大核心 2019年第1期1-19,共19页
机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形... 机器学习是通过计算模型和算法从数据中学习规律的一门学问,在各种需要从复杂数据中挖掘规律的领域中有很多应用,已成为当今广义的人工智能领域最核心的技术之一。近年来,多种深度神经网络在大量机器学习问题上取得了令人瞩目的成果,形成了机器学习领域最亮眼的一个新分支——深度学习,也掀起了机器学习理论、方法和应用研究的一个新高潮。对深度学习代表性方法的核心原理和典型优化算法进行了综述,回顾与讨论了深度学习与以往机器学习方法之间的联系与区别,并对深度学习中一些需要进一步研究的问题进行了初步讨论。 展开更多
关键词 深度学习 机器学习 卷积神经网络 递归神经网络 多层感知器 自编码机 学习算法 机器学习理论
下载PDF
深度学习研究综述 被引量:138
4
作者 张荣 李伟平 莫同 《信息与控制》 CSCD 北大核心 2018年第4期385-397,410,共14页
近年来,中美等国家、谷歌等高科技公司纷纷加大对人工智能的投入,深度学习是目前人工智能的重点研究领域之一,本文对深度学习最新进展及未来研究方向进行了分析和总结.首先概述了三类深度学习基本模型,包括多层感知器、卷积神经网络和... 近年来,中美等国家、谷歌等高科技公司纷纷加大对人工智能的投入,深度学习是目前人工智能的重点研究领域之一,本文对深度学习最新进展及未来研究方向进行了分析和总结.首先概述了三类深度学习基本模型,包括多层感知器、卷积神经网络和循环神经网络.在此基础上,进一步分析了不断涌现出来的新型卷积神经网络和循环神经网络.然后本文总结了深度学习在人工智能众多领域中的应用,包括语音处理、计算机视觉和自然语言处理等.最后探讨了深度学习目前存在的问题并给出了相应的可能解决方法. 展开更多
关键词 深度学习 神经网络 机器学习 人工智能 卷积神经网络 循环神经网络
原文传递
一种SVM增量学习算法α-ISVM 被引量:85
5
作者 萧嵘 王继成 +1 位作者 孙正兴 张福炎 《软件学报》 EI CSCD 北大核心 2001年第12期1818-1824,共7页
基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础... 基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础上 ,进一步提出了一种基于遗忘因子α的 SVM增量学习改进算法α- ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识 ,使得对样本进行有选择地遗忘成为可能 .理论分析和实验结果表明 ,该算法能在保证分类精度的同时 ,有效地提高训练速度并降低存储空间的占用 . 展开更多
关键词 机器学习 SVM理论 增量学习算法 α-ISVM
下载PDF
超越碎片化学习:语义图示与深度学习 被引量:136
6
作者 顾小清 冯园园 胡思畅 《中国电化教育》 CSSCI 北大核心 2015年第3期39-48,共10页
泛在技术的普及使得信息的获取更加便捷,与之伴随地是信息消费中的碎片化、多任务和浅层读图的现象。针对这一问题,该文依托于"语义图示"所开展的研究,提出一个有助于提高学习深度的方案——语义图示工具模型。作为一种帮助... 泛在技术的普及使得信息的获取更加便捷,与之伴随地是信息消费中的碎片化、多任务和浅层读图的现象。针对这一问题,该文依托于"语义图示"所开展的研究,提出一个有助于提高学习深度的方案——语义图示工具模型。作为一种帮助学习者达到深层学习的工具,语义图示工具的设计超越碎片化的知识获取方式,为学习者提供系统而全面的学习支持。该文首先追溯机器学习和教育领域中深度学习的发展;接着在语义图示工具的设计中,借助人工智能技术,设计专家系统作为后台支持,以实现可视化语义建模、语义推荐以及动态模拟的核心功能,这些功能旨在通过语义图示帮助学习者做出决策、解决问题,以超越碎片化的信息获取方式;最后,该文以案例的方式呈现语义图示工具中的几个核心功能,以示例如何通过可视化的语义图示超越碎片化的语义获取。 展开更多
关键词 碎片化 语义图示 深度学习 机器学习
下载PDF
深度学习研究与进展 被引量:133
7
作者 孙志远 鲁成祥 +1 位作者 史忠植 马刚 《计算机科学》 CSCD 北大核心 2016年第2期1-8,共8页
深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理... 深度学习是机器学习领域一个新兴的研究方向,它通过模仿人脑结构,实现对复杂输入数据的高效处理,智能地学习不同的知识,而且能够有效地解决多类复杂的智能问题。近年来,随着深度学习高效学习算法的出现,机器学习界掀起了研究深度学习理论及应用的热潮。实践表明,深度学习是一种高效的特征提取方法,它能够提取数据中更加抽象的特征,实现对数据更本质的刻画,同时深层模型具有更强的建模和推广能力。鉴于深度学习的优点及其广泛应用,对深度学习进行了较为系统的介绍,详细阐述了其产生背景、理论依据、典型的深度学习模型、具有代表性的快速学习算法、最新进展及实践应用,最后探讨了深度学习未来值得研究的方向。 展开更多
关键词 深度学习 机器学习 深层神经网络 图像识别 语音识别 自然语言处理
下载PDF
基于排序学习的推荐算法研究综述 被引量:108
8
作者 黄震华 张佳雯 +2 位作者 田春岐 孙圣力 向阳 《软件学报》 EI CSCD 北大核心 2016年第3期691-713,共23页
排序学习技术尝试用机器学习的方法解决排序问题,已被深入研究并广泛应用于不同的领域,如信息检索、文本挖掘、个性化推荐、生物医学等.将排序学习融入推荐算法中,研究如何整合大量用户和物品的特征,构建更加贴合用户偏好需求的用户模型... 排序学习技术尝试用机器学习的方法解决排序问题,已被深入研究并广泛应用于不同的领域,如信息检索、文本挖掘、个性化推荐、生物医学等.将排序学习融入推荐算法中,研究如何整合大量用户和物品的特征,构建更加贴合用户偏好需求的用户模型,以提高推荐算法的性能和用户满意度,成为基于排序学习推荐算法的主要任务.对近些年基于排序学习的推荐算法研究进展进行综述,并对其问题定义、关键技术、效用评价、应用进展等进行概括、比较和分析.最后,对基于排序学习的推荐算法的未来发展趋势进行探讨和展望. 展开更多
关键词 排序学习 推荐算法 机器学习 兴趣模型 个性化服务
下载PDF
网络表示学习综述 被引量:101
9
作者 涂存超 杨成 +1 位作者 刘知远 孙茂松 《中国科学:信息科学》 CSCD 北大核心 2017年第8期980-996,共17页
网络是表达物体和物体间联系的一种重要形式,针对网络的分析研究的一个关键问题就是研究如何合理地表示网络中的特征信息.随着机器学习技术的发展,针对网络中节点的特征学习成为了一项新兴的研究任务.网络表示学习算法将网络信息转化为... 网络是表达物体和物体间联系的一种重要形式,针对网络的分析研究的一个关键问题就是研究如何合理地表示网络中的特征信息.随着机器学习技术的发展,针对网络中节点的特征学习成为了一项新兴的研究任务.网络表示学习算法将网络信息转化为低维稠密的实数向量,并用于已有的机器学习算法的输入.举例来说,节点表示可以作为特征送入支持向量机等分类器用于节点分类任务,也可以作为欧氏空间中的点坐标用于可视化任务.近年来,网络表示学习问题吸引了大量的研究者的目光,本文将针对近年来的网络表示学习工作进行系统性的介绍和总结. 展开更多
关键词 网络 表示学习 机器学习 深度学习 神经网络
原文传递
基于深度神经网络的中文命名实体识别 被引量:75
10
作者 张海楠 伍大勇 +1 位作者 刘悦 程学旗 《中文信息学报》 CSCD 北大核心 2017年第4期28-35,共8页
由于中文词语缺乏明确的边界和大小写特征,单字在不同词语下的意思也不尽相同,较于英文,中文命名实体识别显得更加困难。该文利用词向量的特点,提出了一种用于深度学习框架的字词联合方法,将字特征和词特征统一地结合起来,它弥补了词特... 由于中文词语缺乏明确的边界和大小写特征,单字在不同词语下的意思也不尽相同,较于英文,中文命名实体识别显得更加困难。该文利用词向量的特点,提出了一种用于深度学习框架的字词联合方法,将字特征和词特征统一地结合起来,它弥补了词特征分词错误蔓延和字典稀疏的不足,也改善了字特征因固定窗口大小导致的上下文缺失。在词特征中加入词性信息后,进一步提高了系统的性能。在1998年《人民日报》语料上的实验结果表明,该方法达到了良好的效果,在地名、人名、机构名识别任务上分别提高1.6%、8%、3%,加入词性特征的字词联合方法的F1值可以达到96.8%、94.6%、88.6%。 展开更多
关键词 命名实体识别 深度学习 神经网络 机器学习 词性
下载PDF
基于深度学习的镜下矿石矿物的智能识别实验研究 被引量:69
11
作者 徐述腾 周永章 《岩石学报》 SCIE EI CAS CSCD 北大核心 2018年第11期3244-3252,共9页
矿石矿物鉴定的智能化是智能地质学和智能矿床学的基础技术之一。计算机视觉技术和深度学习理论使矿石矿物鉴定的智能化成为可能。本研究基于深度学习系统Tensor Flow,以吉林夹皮沟金矿和河北石湖金矿的黄铁矿、黄铜矿、方铅矿、闪锌矿... 矿石矿物鉴定的智能化是智能地质学和智能矿床学的基础技术之一。计算机视觉技术和深度学习理论使矿石矿物鉴定的智能化成为可能。本研究基于深度学习系统Tensor Flow,以吉林夹皮沟金矿和河北石湖金矿的黄铁矿、黄铜矿、方铅矿、闪锌矿等硫化物矿物为例,设计有针对性的Unet卷积神经网络模型,有效自动提取矿相显微镜下矿石矿物的深层特征信息,实现镜下矿石矿物智能识别与分类。实验显示,模型在训练过程中,随着训练次数的增加,模型精度在不断增大,损失函数不断减小;经过3000个批处理之后,模型精度和损失函数基本趋于稳定。训练出的模型对测试集中的显微镜镜下矿石矿物照片的识别成功率均高于90%,说明实验所建立的模型,具有很好的图像特征提取能力,能完成镜下矿石矿物智能识别的任务。 展开更多
关键词 卷积神经网络算法 深度学习 矿物自动识别 地质大数据 智能地质学 机器学习
下载PDF
The State of the Art of Data Science and Engineering in Structural Health Monitoring 被引量:63
12
作者 Yuequan Bao Zhicheng Chen +3 位作者 Shiyin Wei Yang Xu Zhiyi Tang Hui Li 《Engineering》 SCIE EI 2019年第2期234-242,共9页
Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the... Structural health monitoring (SHM) is a multi-discipline field that involves the automatic sensing of structural loads and response by means of a large number of sensors and instruments, followed by a diagnosis of the structural health based on the collected data. Because an SHM system implemented into a structure automatically senses, evaluates, and warns about structural conditions in real time, massive data are a significant feature of SHM. The techniques related to massive data are referred to as data science and engineering, and include acquisition techniques, transition techniques, management techniques, and processing and mining algorithms for massive data. This paper provides a brief review of the state of the art of data science and engineering in SHM as investigated by these authors, and covers the compressive sampling-based data-acquisition algorithm, the anomaly data diagnosis approach using a deep learning algorithm, crack identification approaches using computer vision techniques, and condition assessment approaches for bridges using machine learning algorithms. Future trends are discussed in the conclusion. 展开更多
关键词 Structural HEALTH MONITORING MONITORING DATA COMPRESSIVE sampling machine learning Deep learning
下载PDF
Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring 被引量:63
13
作者 Billie F. Spencer Jr. Vedhus Hoskere Yasutaka Narazaki 《Engineering》 SCIE EI 2019年第2期199-222,共24页
Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate ... Computer vision techniques, in conjunction with acquisition through remote cameras and unmanned aerial vehicles (UAVs), offer promising non-contact solutions to civil infrastructure condition assessment. The ultimate goal of such a system is to automatically and robustly convert the image or video data into actionable information. This paper provides an overview of recent advances in computer vision techniques as they apply to the problem of civil infrastructure condition assessment. In particular, relevant research in the fields of computer vision, machine learning, and structural engineering is presented. The work reviewed is classified into two types: inspection applications and monitoring applications. The inspection applications reviewed include identifying context such as structural components, characterizing local and global visible damage, and detecting changes from a reference image. The monitoring applications discussed include static measurement of strain and displacement, as well as dynamic measurement of displacement for modal analysis. Subsequently, some of the key challenges that persist toward the goal of automated vision-based civil infrastructure and monitoring are presented. The paper concludes with ongoing work aimed at addressing some of these stated challenges. 展开更多
关键词 Structural INSPECTION and MONITORING Artificial INTELLIGENCE Computer VISION machine learning Optical flow
下载PDF
深度学习的研究与发展 被引量:61
14
作者 张建明 詹智财 +1 位作者 成科扬 詹永照 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期191-200,共10页
针对以往浅层学习对特征表达能力不足和特征维度过多导致的维数灾难等现象,深度学习通过所特有的层次结构和其能够从低等级特征中提取高等级特征很好地解决了这些问题,并给人工智能带来了新的希望.首先介绍了深度学习的发展历程,并介绍... 针对以往浅层学习对特征表达能力不足和特征维度过多导致的维数灾难等现象,深度学习通过所特有的层次结构和其能够从低等级特征中提取高等级特征很好地解决了这些问题,并给人工智能带来了新的希望.首先介绍了深度学习的发展历程,并介绍了基于restricted boltzmann machines(RBM)、auto encoder(AE)和convolutional neural networks(CNN)的deep belief networks(DBN)、deep boltzmann machine(DBM)和stacked auto encoders(SAE)等深度模型.其次,对近几年深度学习在语音识别、计算机视觉、自然语言处理以及信息检索等方面的应用的介绍,说明了深度学习结构在相比较于其他结构的优越性和在不同任务上更好的适应性.最后通过对现有的深度学习在在线学习能力、大数据上和深度结构模型的改进上的思考和总结,展望了今后深度学习的发展方向. 展开更多
关键词 浅层学习 深度学习 层次结构 人工智能 机器学习
下载PDF
6G Visions:Mobile Ultra-Broadband,Super Internet-of-Things,and Artificial Intelligence 被引量:59
15
作者 Lin Zhang Ying-Chang Liang Dusit Niyato 《China Communications》 SCIE CSCD 2019年第8期1-14,共14页
With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way fo... With a ten-year horizon from concept to reality, it is time now to start thinking about what will the sixth-generation(6G) mobile communications be on the eve of the fifth-generation(5G) deployment. To pave the way for the development of 6G and beyond, we provide 6G visions in this paper. We first introduce the state-of-the-art technologies in 5G and indicate the necessity to study 6G. By taking the current and emerging development of wireless communications into consideration, we envision 6G to include three major aspects, namely, mobile ultra-broadband, super Internet-of-Things(IoT), and artificial intelligence(AI). Then, we review key technologies to realize each aspect. In particular, teraherz(THz) communications can be used to support mobile ultra-broadband, symbiotic radio and satellite-assisted communications can be used to achieve super IoT, and machine learning techniques are promising candidates for AI. For each technology, we provide the basic principle, key challenges, and state-of-the-art approaches and solutions. 展开更多
关键词 6G visions THZ COMMUNICATIONS SYMBIOTIC RADIO satellite-assisted COMMUNICATIONS artificial INTELLIGENCE machine learning
下载PDF
深度学习中的对抗样本问题 被引量:58
16
作者 张思思 左信 刘建伟 《计算机学报》 EI CSCD 北大核心 2019年第8期1886-1904,共19页
对抗样本是深度学习在安全领域中的热点问题,对抗样本的特性、生成、攻击方式以及如何防御对抗样本的攻击是当前研究对抗样本的重点问题.该文从对抗样本的概念、出现对抗样本的原因、对抗样本的攻击方式及原因阐述对抗样本的关键技术问... 对抗样本是深度学习在安全领域中的热点问题,对抗样本的特性、生成、攻击方式以及如何防御对抗样本的攻击是当前研究对抗样本的重点问题.该文从对抗样本的概念、出现对抗样本的原因、对抗样本的攻击方式及原因阐述对抗样本的关键技术问题,对抗样本的概念主要是对对抗样本、对抗目标、对抗攻击所需知识的定义.该文列出了产生对抗样本的可能原因,目前,针对对抗样本出现的原因主要有三种观点:流形中的低概率区域解释,线性解释,此外,还有一种观点认为线性解释存在局限性,即当前的猜想都不能令人信服,进一步研究对抗样本出现的原因是未来重要的研究内容.并详细分析了对抗样本的几种典型生成方式:F-BFGS法、FGS法、迭代法、迭代最小可能类法及其它方法.并指出了其优缺点和适用的场景,比较了几种主要生成方式的不同之处.此外,对抗样本的攻击方式从应用场景上看主要分为两种,一种是白盒攻击,一种是黑盒攻击.对抗样本具有迁移性是对抗样本攻击的原因,该属性意味着攻击者可以不用直接接触基础模型,而选择攻击一个机器学习模型使样本被错误分类.针对对抗样本的攻击方式及原因,列出了目前深度学习中针对对抗样本的几种主要的防御技术:基于正则化方法、对抗性的预处理训练方法,蒸馏方法、拒绝分类方法等其它方法.指出了不同防御措施的适用场景与不足,阐释了上述防御措施均不能完全避免对抗样本的攻击.该文进一步探讨了对抗样本的应用,目前为止,对抗样本的应用主要是用在对抗评估及对抗训练上.最后,对对抗样本的未来研究方向进行了总体展望,彻底解决对抗攻击问题,仍有大量的理论和实践问题需要解决.找出对抗样本的特性,给出其具有实际应用前景的数学描述,探讨普适性的对抗样本生成方法,对抗样本的生成机� 展开更多
关键词 对抗样本 特性 对抗样本生成 攻击方式 防御技术 深度学习 机器学习
下载PDF
Deep Reinforcement Learning for Power System Applications: An Overview 被引量:51
17
作者 Zidong Zhang Dongxia Zhang Robert C.Qiu 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2020年第1期213-225,共13页
Due to increasing complexity, uncertainty and data dimensions in power systems, conventional methods often meet bottlenecks when attempting to solve decision and control prob- lems. Therefore, data-driven methods towa... Due to increasing complexity, uncertainty and data dimensions in power systems, conventional methods often meet bottlenecks when attempting to solve decision and control prob- lems. Therefore, data-driven methods toward solving such prob- lems are being extensively studied. Deep reinforcement learning (DRL) is one of these data-driven methods and is regarded as real artificial intelligence (AI). DRL is a combination of deep learning (DL) and reinforcement learning (RL). This field of research has been applied to solve a wide range of complex sequential decision-making problems, including those in power systems. This paper firstly reviews the basic ideas, models, algorithms and techniques of DRL. Applications in power systems such as energy management, demand response, electricity market, operational control, and others are then considered. In addition, recent advances in DRL including the combination of RL with other classical methods, and the prospect and challenges of applications in power systems are also discussed. 展开更多
关键词 Artificial intelligence deep reinforcement learning machine learning power system smart grids
原文传递
并行学习神经网络集成方法 被引量:36
18
作者 王正群 陈世福 陈兆乾 《计算机学报》 EI CSCD 北大核心 2005年第3期402-408,共7页
该文分析了神经网络集成中成员神经网络的泛化误差、成员神经网络之间的差异度对神经网络集成泛化误差的影响,提出了一种并行学习神经网络集成方法;对参与集成的成员神经网络,给出了一种并行训练方法,不仅满足了成员网络本身的精度要求... 该文分析了神经网络集成中成员神经网络的泛化误差、成员神经网络之间的差异度对神经网络集成泛化误差的影响,提出了一种并行学习神经网络集成方法;对参与集成的成员神经网络,给出了一种并行训练方法,不仅满足了成员网络本身的精度要求,还满足了它与其余成员网络的差异性要求;另外,给出了一种并行确定集成成员神经网络权重方法.实验结果表明,使用该文的成员神经网络训练方法、成员神经网络集成方法能够构建有效的神经网络集成系统. 展开更多
关键词 并行学习 神经网络 神经网络集成 机器学习 泛化误差
下载PDF
一种不确定性条件下的自主式知识学习模型 被引量:36
19
作者 王国胤 何晓 《软件学报》 EI CSCD 北大核心 2003年第6期1096-1102,共7页
在没有领域先验知识条件下的不确定知识主动式学习是机器学习领域中的一个难题.通过研究决策表和决策规则的不确定性,建立基于粗集表示、度量和处理不确定性信息和知识的理论,并且结合Skowron的缺省规则获取算法,提出一种不确定性条件... 在没有领域先验知识条件下的不确定知识主动式学习是机器学习领域中的一个难题.通过研究决策表和决策规则的不确定性,建立基于粗集表示、度量和处理不确定性信息和知识的理论,并且结合Skowron的缺省规则获取算法,提出一种不确定性条件下的数据自主式学习模型和方法,以解决这一问题.通过仿真实验,验证了该自主式学习方法的有效性. 展开更多
关键词 不确定性 粗集 自主式学习 知识获取 机器学习
下载PDF
基于卷积神经网络的图像识别算法设计与实现 被引量:46
20
作者 王振 高茂庭 《现代计算机(中旬刊)》 2015年第7期61-66,共6页
卷积神经网络在图像识别领域取得很好的效果,但其网络结构对图像识别的效果和效率有较大的影响,为改善识别性能,通过重复使用较小卷积核,设计并实现一种新的卷积神经网络结构,有效地减少训练参数的数量,并能够提高识别的准确率。与图像... 卷积神经网络在图像识别领域取得很好的效果,但其网络结构对图像识别的效果和效率有较大的影响,为改善识别性能,通过重复使用较小卷积核,设计并实现一种新的卷积神经网络结构,有效地减少训练参数的数量,并能够提高识别的准确率。与图像识别领域当前具有世界先进水平的ILSVRC挑战赛中取得较好成绩的算法对比实验,验证这种结构的有效性。 展开更多
关键词 卷积神经网络 深度学习 图像识别 机器学习 神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部