以浸出温度、NaCl浓度、颗粒粒度和液固比对铅浸出率影响的实验条件和数据为基础,建立NaCl-HCl体系,采用液-固多相反应的收缩核模型,系统分析了铅渣中铅的浸出动力学过程。结果表明:根据实验数据求出浸出反应的宏观动力学方程,计算得到...以浸出温度、NaCl浓度、颗粒粒度和液固比对铅浸出率影响的实验条件和数据为基础,建立NaCl-HCl体系,采用液-固多相反应的收缩核模型,系统分析了铅渣中铅的浸出动力学过程。结果表明:根据实验数据求出浸出反应的宏观动力学方程,计算得到表观活化能为45.239 k J/mol,说明该体系浸出过程受表面化学反应控制;在实验选取的参数范围内,增大NaCl浓度、浸出温度和液固比以及减小颗粒粒度均有利于提高铅的浸出率。展开更多
Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other wor...Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.展开更多
A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly p...A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.展开更多
Electrolytic manganese residue(EMR) is the waste slag generated from the electrolysis manganese industry.As a promising exploitable adsorbent,EMR has become a hot research topic.However,EMR’s low adsorption capacity ...Electrolytic manganese residue(EMR) is the waste slag generated from the electrolysis manganese industry.As a promising exploitable adsorbent,EMR has become a hot research topic.However,EMR’s low adsorption capacity has limited its applications as an efficient adsorbent.In this study,the EMR was mixed with serpentine and calcined(at 800℃ for 2 h) to prepare a composite adsorbent(S-EMR) with its specific surface area of 11.998 m^(2)·g^(-1)(increased compared to the original EMR) and improved adsorption capacities for Cd^(2+)(98.05 mg·g^(-1)) and Pb^(2+)(565.81 mg·g^(-1)).Kinetic studies have shown that the pseudo-first-order kinetics(PSO)model could best describe the adsorption kinetics of S-EMR for Cd^(2+)/Pb^(2+),implying that the chemisorption process is the rate-limiting step.The effects of different interfering ions on S-EMR’ s adsorption for Cd^(2+)/Pb^(2+)may be due to the difference in their electronegativity.Results of response surface methodology tests showed that pH had the highest influence on adsorption,and the removal efficiency of S-EMR reached 99.92% for Cd(Ⅱ) and 94.00%for Pb(Ⅱ).X-ray photoelectron spectroscopy(XPS) analyses revealed that chemical precipitation was the predominant mechanism for Cd^(2+)/Pb^(2+)removal,and the adsorption mechanisms were associated with ion exchange and electrostatic attraction.The results showed that S-EMR could be used as an effective adsorbent for the removal of Cd(Ⅱ)/Pb(Ⅱ) from water bodies,rendering dual benefits of pollution control and resource recovery.展开更多
文摘以浸出温度、NaCl浓度、颗粒粒度和液固比对铅浸出率影响的实验条件和数据为基础,建立NaCl-HCl体系,采用液-固多相反应的收缩核模型,系统分析了铅渣中铅的浸出动力学过程。结果表明:根据实验数据求出浸出反应的宏观动力学方程,计算得到表观活化能为45.239 k J/mol,说明该体系浸出过程受表面化学反应控制;在实验选取的参数范围内,增大NaCl浓度、浸出温度和液固比以及减小颗粒粒度均有利于提高铅的浸出率。
基金financially supported by the National Natural Science Foundation of China(U21A2078,22179042,and 12104170)the Natural Science Foundation of Fujian Province(2020J06021 and 2020J01064)Scientific Research Funds of Huaqiao University(23BS109)。
文摘Lead iodide(PbI2) is a vital raw material for preparing perovskite solar cells(PSCs),and it not only takes part in forming the light absorption layer but also remains in the grain boundary as a passivator.In other words,the PbI2 content in the precursor and as formed film will affect the efficiency and stability of the PSCs.With moderate residual PbI2,it passivates the bulk/surface defects of perovskite,reduces the interfacial recombination,promotes the perovskite stability,minimizes the device hysteresis,and so on.Deficient PbI2 residue will reduce the interfacial passivation effect and device performance.In addition to facilitating the non-radiative recombination,over PbI2 residue can also lead to electronic insulation in the grain boundary and deteriorate the device performance.However,the impact and regulation of PbI2 residue on the device performance and stability is still not fully understood.Herein,a comprehensive and detailed review is presented by discussing the PbI2 residue impact and its regulation strategies(i.e., elimination,facilitation and conversion of the residue PbI2) to manipulate the PbI2 content,distribution and forms.Finally,we also show future outlooks in this field,with an aim to help further the progression of high-efficiency and stable PSCs.
基金the Research Fund for the Doctoral Program of Higher Education, China (No. 20110042120014)the Project Supported by National Natural Science Foundation of China (Nos. 51204036 and 51234009)the National Basic Research of Program of China (No. 2014CB643405)
文摘A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaC12 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were inves- tigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaC12 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching tempera- ture of 80℃, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.
基金financially supported by the Open-Up and Innovation Funds of Hubei Three Gorges Laboratory (No.SK211004)。
文摘Electrolytic manganese residue(EMR) is the waste slag generated from the electrolysis manganese industry.As a promising exploitable adsorbent,EMR has become a hot research topic.However,EMR’s low adsorption capacity has limited its applications as an efficient adsorbent.In this study,the EMR was mixed with serpentine and calcined(at 800℃ for 2 h) to prepare a composite adsorbent(S-EMR) with its specific surface area of 11.998 m^(2)·g^(-1)(increased compared to the original EMR) and improved adsorption capacities for Cd^(2+)(98.05 mg·g^(-1)) and Pb^(2+)(565.81 mg·g^(-1)).Kinetic studies have shown that the pseudo-first-order kinetics(PSO)model could best describe the adsorption kinetics of S-EMR for Cd^(2+)/Pb^(2+),implying that the chemisorption process is the rate-limiting step.The effects of different interfering ions on S-EMR’ s adsorption for Cd^(2+)/Pb^(2+)may be due to the difference in their electronegativity.Results of response surface methodology tests showed that pH had the highest influence on adsorption,and the removal efficiency of S-EMR reached 99.92% for Cd(Ⅱ) and 94.00%for Pb(Ⅱ).X-ray photoelectron spectroscopy(XPS) analyses revealed that chemical precipitation was the predominant mechanism for Cd^(2+)/Pb^(2+)removal,and the adsorption mechanisms were associated with ion exchange and electrostatic attraction.The results showed that S-EMR could be used as an effective adsorbent for the removal of Cd(Ⅱ)/Pb(Ⅱ) from water bodies,rendering dual benefits of pollution control and resource recovery.