A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in ge...A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing.展开更多
基金the National Natural Science Foundation of China(79990584)
文摘A new parallel expectation-maximization (EM) algorithm is proposed for large databases. The purpose of the algorithm is to accelerate the operation of the EM algorithm. As a well-known algorithm for estimation in generic statistical problems, the EM algorithm has been widely used in many domains. But it often requires significant computational resources. So it is needed to develop more elaborate methods to adapt the databases to a large number of records or large dimensionality. The parallel EM algorithm is based on partial Esteps which has the standard convergence guarantee of EM. The algorithm utilizes fully the advantage of parallel computation. It was confirmed that the algorithm obtains about 2.6 speedups in contrast with the standard EM algorithm through its application to large databases. The running time will decrease near linearly when the number of processors increasing.