In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6...In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.展开更多
High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries,raising safety concerns for their applications.Thoroughly understanding the thermal failure process can offer valuable gu...High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries,raising safety concerns for their applications.Thoroughly understanding the thermal failure process can offer valuable guidance for material optimization on thermal stability and new opportunities in monitoring battery thermal runaway(TR).Herein,this work comprehensively investigates the thermal failure process of a single-crystal nickel-rich layered cathode and finds that the latent thermal failure starts at∼120℃far below the TR temperature(225℃).During this stage of heat accumulation,sequential structure transition is revealed by atomic resolution electron microscopy,which follows the layered→cation mixing layered→LiMn_(2)O_(4)-type spinel→disordered spinel→rock salt.This progression occurs as a result of the continuous migration and densification of transition metal cations.Phase transition generates gaseous oxygen,initially confined within the isolated closed pores,thereby not showing any thermal failure phenomena at the macro-level.Increasing temperature leads to pore growth and coalescence,and eventually to the formation of open pores,causing oxygen gas release and weight loss,which are the typical TR features.We highlight that latent thermal instability occurs before the macro-level TR,suggesting that suppressing phase transitions caused by early thermal instability is a crucial direction for material optimization.Our findings can also be used for early warning of battery thermal runaway.展开更多
The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first stu...The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.展开更多
Energy efficiency(EE) is a key requirement for the design of short-range communication network.In order to alleviate energy consumption(EC) constraint,a novel layered heterogeneous mobile cloud architecture is propose...Energy efficiency(EE) is a key requirement for the design of short-range communication network.In order to alleviate energy consumption(EC) constraint,a novel layered heterogeneous mobile cloud architecture is proposed in this paper.Based on the proposed layered heterogeneous mobile cloud architecture,we establish an appropriate energy consumption model,and design an energy efficiency scheme based on joint data packet fragmentation and cooperative transmission and analyze the energy efficiency corresponding to different packet sizes and the cloud size.Simulation results show that,when all nodes of the cloud are accessing the same size of data packet fragmentation,the proposed layered heterogeneous mobile cloud architecture can provide significant energy savings.The results provide useful insights into the possible operation of the strategies and show that significant energy consumption reductions are possible.展开更多
To achieve a better material for uncooled infrared (IR) detector, polycrystalline VO2(B) thin films with layered W-doping were fabricated on Si substrates by magnetron sputtering, and the best temperature coefficient ...To achieve a better material for uncooled infrared (IR) detector, polycrystalline VO2(B) thin films with layered W-doping were fabricated on Si substrates by magnetron sputtering, and the best temperature coefficient of resistance (TCR) value reached -4.1%/K. The film synthesis was in a two-step route, first deposition at room temperature and then post-deposition annealing at 450 ℃, to better control the crystallization behavior. Various transmission electron microscopy (TEM) methods were employed to investigate three sets of multi-layered films with different deposition time, 10, 20, and 30 min, with especial emphasis on the effect of layered W-doping scheme on the formation of multiple VO2(B) layers. Spatial-resolved energy dispersive X-ray spectroscopy (EDS) revealed the alternative patterns of W-rich layers and W-poor layers, while the thinner films exhibited better crystallinity and texturing. By comparison with an as-deposited film, it was found that the inter-diffusion between the two types of layers was completed in the deposition step while both remained in amorphous structure. A stable W solution of about 8 cat% in VO2(B) layers measured from all these films indicated that the layered doping can tailor the multi-layered microstructure to optimize the performance of VO2(B) films.展开更多
Crystal structure of Ti_(5)Al_(2)C_(3)was determined by means of X-ray powder diffraction(XRPD),transmission electron microscopy(TEM)and ab initio calculations.In contrast to the already known P63/mmc space group that...Crystal structure of Ti_(5)Al_(2)C_(3)was determined by means of X-ray powder diffraction(XRPD),transmission electron microscopy(TEM)and ab initio calculations.In contrast to the already known P63/mmc space group that the MAX phases crystallize,it was demonstrated that the R3_m space group could better satisfy the experimental data.The lattice parameters are a=0.30564 nm,c=4.81846 nm in a hexagonal unit cell.展开更多
The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasona...The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.展开更多
文摘In this paper,layered periodic foundations(LPFs)are numerically examined for their responses to longitudinal and transverse modes in the time and frequency domains.Three different unit-cells,i.e.,2-layer,4-layer,and 6-layer unit-cells,comprising concrete/rubber,concrete/rubber/steel/rubber,and concrete/rubber/steel/rubber/lead/rubber materials,respectively,are taken into account.Also,the viscoelasticity behavior of the rubber is modeled with two factors,i.e.,a frequency-independent(FI)loss factor and a linear frequency-dependent(FD)loss factor.Following the extraction of the complex dispersion curves and the identification of the band gaps(BGs),the simulations of wave transmission in the time and frequency domains are performed using the COMSOL software.Subsequent parametric studies evaluate the effects of the rubber viscoelasticity models on the dispersion curves and the wave transmission for the longitudinal and transverse modes.The results show that considering the rubber viscoelasticity enhances the wave attenuation performance.Moreover,the transverse-mode damping is more sensitive to the viscoelasticity model than its longitudinal counterpart.The 6-layer unit-cell LPF exhibits the lowest BG,ranging from 4.8 Hz to 6.5 Hz.
基金the National Natural Science Foundation of China(12174015)the Natural Science Foundation of Beijing,China(2212003)+1 种基金the China National Petroleum Corporation Innovation Found(2021DQ02-1004)the National Natural Science Foundation of China(12074017,12274010).
文摘High nickel content worsens the thermal stability of layered cathodes for lithium-ion batteries,raising safety concerns for their applications.Thoroughly understanding the thermal failure process can offer valuable guidance for material optimization on thermal stability and new opportunities in monitoring battery thermal runaway(TR).Herein,this work comprehensively investigates the thermal failure process of a single-crystal nickel-rich layered cathode and finds that the latent thermal failure starts at∼120℃far below the TR temperature(225℃).During this stage of heat accumulation,sequential structure transition is revealed by atomic resolution electron microscopy,which follows the layered→cation mixing layered→LiMn_(2)O_(4)-type spinel→disordered spinel→rock salt.This progression occurs as a result of the continuous migration and densification of transition metal cations.Phase transition generates gaseous oxygen,initially confined within the isolated closed pores,thereby not showing any thermal failure phenomena at the macro-level.Increasing temperature leads to pore growth and coalescence,and eventually to the formation of open pores,causing oxygen gas release and weight loss,which are the typical TR features.We highlight that latent thermal instability occurs before the macro-level TR,suggesting that suppressing phase transitions caused by early thermal instability is a crucial direction for material optimization.Our findings can also be used for early warning of battery thermal runaway.
基金supported by the National Natural Science Foundation of China(Nos.11002026 and 11372039)Beijing Natural Science Foundation(No.3133039)the Scientific Research Foundation for the Returned(No.20121832001)
文摘The interaction of anti-plane elastic SH waves with a periodic array of interface cracks in a multi-layered periodic medium is analyzed in this paper. A perfect periodic structure without interface cracks is first studied and the transmission displacement coefficient is obtained based on the transfer matrix method in conjunction with the Bloch-Floquet theorem. This is then generalized to a single and periodic distribution of cracks at the center interface and the result is compared with that of perfect periodic cases without interface cracks. The dependence of the transmission displacement coefficient on the frequency of the incident wave, the influences of material combination, crack configuration and incident angle are discussed in detail. Compared with the corresponding perfect periodic structure without interface cracks, a new phenomenon is found in the periodic layered system with a single and periodic array of interface cracks.
基金jointly supported by the Chongqing Municipal Natural Science Foundation under Grant No.CSTC2013jjB40001)the National High Technology Research and Development Program of China(863Program)under Grant No.20140908the Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT1299
文摘Energy efficiency(EE) is a key requirement for the design of short-range communication network.In order to alleviate energy consumption(EC) constraint,a novel layered heterogeneous mobile cloud architecture is proposed in this paper.Based on the proposed layered heterogeneous mobile cloud architecture,we establish an appropriate energy consumption model,and design an energy efficiency scheme based on joint data packet fragmentation and cooperative transmission and analyze the energy efficiency corresponding to different packet sizes and the cloud size.Simulation results show that,when all nodes of the cloud are accessing the same size of data packet fragmentation,the proposed layered heterogeneous mobile cloud architecture can provide significant energy savings.The results provide useful insights into the possible operation of the strategies and show that significant energy consumption reductions are possible.
基金This work was financially supported by the National Natural Science Foundation of China under Grant Nos. 51532006 and 51325203, Shanghai Municipal Science and Technology Commission of Shanghai Municipality under Grant No. 16DZ2260600, and the 111 Project (D16002). We are grateful to the Shanghai Institute of Ceramics for technical assistance in TEM and SEM experiments, as well as to Prof. R. Huang of East China Normal University for TEM specimen preparations
文摘To achieve a better material for uncooled infrared (IR) detector, polycrystalline VO2(B) thin films with layered W-doping were fabricated on Si substrates by magnetron sputtering, and the best temperature coefficient of resistance (TCR) value reached -4.1%/K. The film synthesis was in a two-step route, first deposition at room temperature and then post-deposition annealing at 450 ℃, to better control the crystallization behavior. Various transmission electron microscopy (TEM) methods were employed to investigate three sets of multi-layered films with different deposition time, 10, 20, and 30 min, with especial emphasis on the effect of layered W-doping scheme on the formation of multiple VO2(B) layers. Spatial-resolved energy dispersive X-ray spectroscopy (EDS) revealed the alternative patterns of W-rich layers and W-poor layers, while the thinner films exhibited better crystallinity and texturing. By comparison with an as-deposited film, it was found that the inter-diffusion between the two types of layers was completed in the deposition step while both remained in amorphous structure. A stable W solution of about 8 cat% in VO2(B) layers measured from all these films indicated that the layered doping can tailor the multi-layered microstructure to optimize the performance of VO2(B) films.
基金This work was funded by the NSFC under Grant No.50832008,Grant No.91226202 and the IMR innovative research foundation.
文摘Crystal structure of Ti_(5)Al_(2)C_(3)was determined by means of X-ray powder diffraction(XRPD),transmission electron microscopy(TEM)and ab initio calculations.In contrast to the already known P63/mmc space group that the MAX phases crystallize,it was demonstrated that the R3_m space group could better satisfy the experimental data.The lattice parameters are a=0.30564 nm,c=4.81846 nm in a hexagonal unit cell.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 60832007, 60901018, 60902027)the National High-Tech Research & Development Program of China (Grant No. 2009AA01Z236)
文摘The V-BLAST system with asynchronous transmission mode first proposed by Shao can achieve full diversity only by using a simple linear detection scheme under zero forcing (ZF) criterion; therefore it gives a reasonable tradeoff between complexity and performance. In this paper, we propose two types of successive interference cancellation (SIC) detection schemes for the asynchronous V-BLAST system, one is characterized by applying Mr successive interference cancellators before a maximal ratio combiner (where Mr is the number of receive antennas), and the other has a maximal ratio combiner before a successive interference cancellator. Since Type Ⅰ consumes more energy of the previously detected signals to recover a signal, Type Ⅱ can offer a better performance and simulations demonstrate its validity.