The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector ...The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four eryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.展开更多
基金Supported by National Natural Science Foundation of China(11079001)
文摘The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four eryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.