The effect of Mo addition on microstructural characteristics of a nickel-base single crystal superalloy containing 4 wt% Re was investigated. The γ/γ’ partitioning ratios determined by energy dispersive spectromete...The effect of Mo addition on microstructural characteristics of a nickel-base single crystal superalloy containing 4 wt% Re was investigated. The γ/γ’ partitioning ratios determined by energy dispersive spectrometer attached to a transmission electron microscope showed that the addition of Mo enhanced the partitioning of Re,W and Cr in the g matrix while decreased the concentration of Ta in the matrix. Synchrotron radiation diffraction was adopted to measure the γ/γ’ lattice misfit at room temperature. The results indicated that Mo addition changed the γ/γ’ lattice misfit towards larger negative as well as increased the tetragonal distortion of the γ lattice. Additionally,Mo addition led to microstructural instability and altered the precipitation behavior of topologically close-packed phases during 1100 C exposure. Instead of precipitating directly from the matrix,the μ phase was observed to be converted from the α phase which precipitated preferentially as a metastable intermediate in the alloy with high Mo content.展开更多
Two Ni/Ni3Al-interface-contained cluster models with/without lattice misfit are studied by first-principles method to clarify the debates about the segregation behaviors of Hafnium (Hf) and explore the influence of ...Two Ni/Ni3Al-interface-contained cluster models with/without lattice misfit are studied by first-principles method to clarify the debates about the segregation behaviors of Hafnium (Hf) and explore the influence of lattice misfit on the ductility effect of Hr. It is found that though Hf prefers to substitute A1 rather than Ni in Ni3A1 phase within most of the investigated misfit range, its stronger preferring to Ni phase than NiaA1 phase makes it impossible to go into Ni3A1 phase to occupy A1 site in Ni-Ni3A1 alloys. Bond order analysis in Hf-free case shows that lattice misfit has different effects on the Griffith work of interfacial cleavage 27int/E and the maximum theoretical shear stress Zmax of Ni and Ni3A1, contributing to the existence of anomalous strength-temperature phenomena in NiaA1 alloys. However, the addition of Hf will make the 27int/E (or Zmax) of both Ni3A1 and Ni decrease (or increase) with lattice misfit, indicating that the addition of Hf may make the anomalous strength-temperature relationship in Ni3A1 region disappear locally.展开更多
A conventional X-ray difFractometer has been used to determine the -y/y' lattice misfit and γ' volume fraction for a Ru-containing nickel-based single crystal superalloy at room temperature. The rocking curve was u...A conventional X-ray difFractometer has been used to determine the -y/y' lattice misfit and γ' volume fraction for a Ru-containing nickel-based single crystal superalloy at room temperature. The rocking curve was used to characterize the distribution of subgrains. The diffraction peaks obtained by w-20 scan were used to determine the γ/γ' lattice misfit and γ' volume fraction. A three peaks fitting model was proposed. The peak fitting results are in good agreement with the model. The X-ray diffraction results indicate that the nickel-based single crystal superalloy was not a perfect monocrystalline material, which is comprised of many subgrains; and each subgrain also consists of large numbers of mosaic structures. In addition, two anomalous reflection phenomena were found during the experiment and discussed with respect to their occurrence and impact on the measurement. The experimental results show that the γ/γ' lattice misfit and ~/r volume fraction will be various at the different regions of its dendritic microstructure. The average γ/γ' lattice misfit and γ' volume fraction of the experimental alloy are approximately-0.2% and 70%, respectively. Furthermore, the γ' volume fraction calculated by atom microprobe (AP) data is also basically consistent with the experimental results.展开更多
The influence of lattice misfit on the occupation behavior and the ductility effect of Zr in Ni-Ni3Al alloys were explored. It is found in energy analysis that the preferable site of Zr between Ni sublattice and Al su...The influence of lattice misfit on the occupation behavior and the ductility effect of Zr in Ni-Ni3Al alloys were explored. It is found in energy analysis that the preferable site of Zr between Ni sublattice and Al sublattice will change under different lattice misfit, however, the Zr prefers to segregate Ni phase rather than Ni3Al phase in all lattice misfit range, which makes it impossible for Zr to go into Ni3Al phase to occupy Al sublattice in Ni-Ni3Al system. Bond order (BO) analysis shows that the localized ductility effect of Zr differs in different region, and the comparison between Zr-free and Zr-doped BO analysis successfully explain the mechanism of the embrittlement of Ni-Ni3Al alloys and the ductility effect of Zr.展开更多
基金the Shanghai Synchrotron Radiation Facility (SSRF)the financial support of the project from the National Basic Research Program of China (No.2010CB631201)the National High Technology Research and Development Program of China (No.2012AA03A511 and No.2012AA03A513)
文摘The effect of Mo addition on microstructural characteristics of a nickel-base single crystal superalloy containing 4 wt% Re was investigated. The γ/γ’ partitioning ratios determined by energy dispersive spectrometer attached to a transmission electron microscope showed that the addition of Mo enhanced the partitioning of Re,W and Cr in the g matrix while decreased the concentration of Ta in the matrix. Synchrotron radiation diffraction was adopted to measure the γ/γ’ lattice misfit at room temperature. The results indicated that Mo addition changed the γ/γ’ lattice misfit towards larger negative as well as increased the tetragonal distortion of the γ lattice. Additionally,Mo addition led to microstructural instability and altered the precipitation behavior of topologically close-packed phases during 1100 C exposure. Instead of precipitating directly from the matrix,the μ phase was observed to be converted from the α phase which precipitated preferentially as a metastable intermediate in the alloy with high Mo content.
基金Acknowledgments The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51001001 and 51201002). Prof. Y.M. Wang and Dr. H. Li are kindly thanked for helpful discussion and proof reading.
文摘Two Ni/Ni3Al-interface-contained cluster models with/without lattice misfit are studied by first-principles method to clarify the debates about the segregation behaviors of Hafnium (Hf) and explore the influence of lattice misfit on the ductility effect of Hr. It is found that though Hf prefers to substitute A1 rather than Ni in Ni3A1 phase within most of the investigated misfit range, its stronger preferring to Ni phase than NiaA1 phase makes it impossible to go into Ni3A1 phase to occupy A1 site in Ni-Ni3A1 alloys. Bond order analysis in Hf-free case shows that lattice misfit has different effects on the Griffith work of interfacial cleavage 27int/E and the maximum theoretical shear stress Zmax of Ni and Ni3A1, contributing to the existence of anomalous strength-temperature phenomena in NiaA1 alloys. However, the addition of Hf will make the 27int/E (or Zmax) of both Ni3A1 and Ni decrease (or increase) with lattice misfit, indicating that the addition of Hf may make the anomalous strength-temperature relationship in Ni3A1 region disappear locally.
基金supported by the National Basic Research Program (973 Program) of China under grant No. 2010CB631200the National Natural Science Foundation of China (NSFC) under grant No.50931004
文摘A conventional X-ray difFractometer has been used to determine the -y/y' lattice misfit and γ' volume fraction for a Ru-containing nickel-based single crystal superalloy at room temperature. The rocking curve was used to characterize the distribution of subgrains. The diffraction peaks obtained by w-20 scan were used to determine the γ/γ' lattice misfit and γ' volume fraction. A three peaks fitting model was proposed. The peak fitting results are in good agreement with the model. The X-ray diffraction results indicate that the nickel-based single crystal superalloy was not a perfect monocrystalline material, which is comprised of many subgrains; and each subgrain also consists of large numbers of mosaic structures. In addition, two anomalous reflection phenomena were found during the experiment and discussed with respect to their occurrence and impact on the measurement. The experimental results show that the γ/γ' lattice misfit and ~/r volume fraction will be various at the different regions of its dendritic microstructure. The average γ/γ' lattice misfit and γ' volume fraction of the experimental alloy are approximately-0.2% and 70%, respectively. Furthermore, the γ' volume fraction calculated by atom microprobe (AP) data is also basically consistent with the experimental results.
基金the financial support from the National Natural Science Foundation of China(Nos.51001001and 90922008)
文摘The influence of lattice misfit on the occupation behavior and the ductility effect of Zr in Ni-Ni3Al alloys were explored. It is found in energy analysis that the preferable site of Zr between Ni sublattice and Al sublattice will change under different lattice misfit, however, the Zr prefers to segregate Ni phase rather than Ni3Al phase in all lattice misfit range, which makes it impossible for Zr to go into Ni3Al phase to occupy Al sublattice in Ni-Ni3Al system. Bond order (BO) analysis shows that the localized ductility effect of Zr differs in different region, and the comparison between Zr-free and Zr-doped BO analysis successfully explain the mechanism of the embrittlement of Ni-Ni3Al alloys and the ductility effect of Zr.