In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect t...In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.展开更多
This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneury...This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.展开更多
In the Nino3.4 region(tropical Pacific,5°S-5°N,170°-120°W),sea surface temperature(SST)changes are highly correlated with temperature variations in the upper 40-m layer.This study explores the uppe...In the Nino3.4 region(tropical Pacific,5°S-5°N,170°-120°W),sea surface temperature(SST)changes are highly correlated with temperature variations in the upper 40-m layer.This study explores the upper-ocean heat budget in the Nino3.4 region using Ocean Reanalysis System 5(ORAS5)monthly data from 1979 to 2018,with a focus on ocean heat transports at lateral boundaries in the top 40-m layer and their correlation with temperature variations.In the region,there is a well-defined structure of opposite meridional circulation in the upper and lower parts of the thermocline,characterized by divergence in the upper layer above 40 m and convergence in the lower layer.The change of mean temperature in the upper layer is determined by the sum of zonal,meridional,and vertical heat transports,which,however,tend to largely compensate for each other.In general,part of the surface heat flux from the atmosphere to the ocean and the heat transport from the subsurface ocean are transported out of the domain by meridional and zonal currents,leaving only a tiny part to warm or cool the upper ocean.The amplitude of the net surface heat flux effective for the entire 40-m layer of the ocean is weaker than the lateral heat transport.On an interannual timescale,variations of heat transports in both zonal and meridional are positively correlated with temperature anomalies,while the vertical heat transport from the subsurface ocean is negatively correlated.Composite analyses for five El Nino events and five La Nina events also revealed that there is a positive contribution of horizontal transport convergence to temperature anomalies during the evolution of El Nino(warming)and La Nina(cooling),while vertical transport acts against temperature variations.展开更多
基金Supported by the National Science Foundation of China (11002038)Key Project of National Natural Science Funds (50939002)+2 种基金National Defense Foundation Scientific Project (B2420110011)the National Science Foundation for Young Scientists of China (51009035)Natural Science Funds of Heilongjiang Province (E201047,A200901)
文摘In an atrocious ocean environment,the lateral propulsion hole could potentially be partly out of water and capture an air cavity.Bubbles would form when the captured air cavity escapes underwater and they may affect the performance of the sonar.The common commercial computational fluid dynamics software CFX was adopted to calculate the ambient flow field around the lateral propulsion hole generated by a moving vessel.The oscillation of the spherical bubble was based on the Rayleigh-Plesset equation and its migration was modeled using the momentum equation.The radiated noise of the oscillating bubble was also studied.The aim is that the results from this paper would provide some insight into corresponding fluid and acoustic study.
基金This study was supported by the National Natural Science Foundation of China(Grants 11602053 and 51576033)the Fundamental Research Funds for the Central Universities(Grant DUT18JC23).
文摘This study experimentally and numerically investigated the effect of pulsatile flow of different frequencies and outflow resistance on wall deformation in a lateral aneurysm.A method for constructing a flexible aneurysm model was developed,and a self-designed piston pump was used to provide the pulsatile flow conditions.A fluid-structure interaction simulation was applied for comparison with and analysis of experimental findings.The maximum wall displacement oscillation increased as the pulsation frequency and outflow resistance increased,especially at the aneurysm dome.There is an obvious circular motion of the vortex center accompanying the periodic inflow fluctuation,and the pressure at the aneurysm dome at peak flow increased as the pulsatile flow frequency and terminal flow resistance increased.These results could explain why abnormal blood flow with high frequency and high outflow resistance is one of the risk factors for aneurysm rupture.
基金Supported by the National Key Research and Development Program of China(2016YFA0602100)Strategic Priority Research Program of Chinese Academy of Sciences(XDB 40000000,XDB 42000000,and XDA19060102)National Natural Science Foundation of China[42030410 and 41690122(41690120)]。
文摘In the Nino3.4 region(tropical Pacific,5°S-5°N,170°-120°W),sea surface temperature(SST)changes are highly correlated with temperature variations in the upper 40-m layer.This study explores the upper-ocean heat budget in the Nino3.4 region using Ocean Reanalysis System 5(ORAS5)monthly data from 1979 to 2018,with a focus on ocean heat transports at lateral boundaries in the top 40-m layer and their correlation with temperature variations.In the region,there is a well-defined structure of opposite meridional circulation in the upper and lower parts of the thermocline,characterized by divergence in the upper layer above 40 m and convergence in the lower layer.The change of mean temperature in the upper layer is determined by the sum of zonal,meridional,and vertical heat transports,which,however,tend to largely compensate for each other.In general,part of the surface heat flux from the atmosphere to the ocean and the heat transport from the subsurface ocean are transported out of the domain by meridional and zonal currents,leaving only a tiny part to warm or cool the upper ocean.The amplitude of the net surface heat flux effective for the entire 40-m layer of the ocean is weaker than the lateral heat transport.On an interannual timescale,variations of heat transports in both zonal and meridional are positively correlated with temperature anomalies,while the vertical heat transport from the subsurface ocean is negatively correlated.Composite analyses for five El Nino events and five La Nina events also revealed that there is a positive contribution of horizontal transport convergence to temperature anomalies during the evolution of El Nino(warming)and La Nina(cooling),while vertical transport acts against temperature variations.