The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral st...The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.展开更多
Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of late...Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth.展开更多
Background TDP-43 proteinopathies represent a spectrum of neurological disorders,anchored clinically on either end by amyotrophic lateral sclerosis(ALS)and frontotemporal degeneration(FTD).The ALS-FTD spectrum exhibit...Background TDP-43 proteinopathies represent a spectrum of neurological disorders,anchored clinically on either end by amyotrophic lateral sclerosis(ALS)and frontotemporal degeneration(FTD).The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes,highlighting its heterogeneity.This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum.Methods We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD(bvFTD;with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants),103 ALS,and 47 ALS-FTD patients with likely TDP-43.A Subtype and Stage Inference(SuStaIn)model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns,and we related subtypes and stages to clinical,genetic,and neuropathological features of disease.Results SuStaIn identified three novel subtypes:two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions,and a normal-appearing group without obvious brain atrophy.The limbic-predominant subtype tended to present with more impaired cognition,higher frequencies of pathogenic variants in TBK1 and TARDBP genes,and a higher proportion of TDP-43 types B,E and C.In contrast,the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A.The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients,higher cognitive capacity,higher proportion of lower motor neuron onset,milder motor symptoms,and lower frequencies of genetic pathogenic variants.The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration,higher King’s stage,and cognitive decline.Additionally,SuStaIn stages dif展开更多
A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow a...A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the com-plicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.展开更多
基金Funded by the National Natural Science Foundation of China(No.50309004)
文摘The volumetric strain was categorized into elastic and plastic parts. The farmer camposed of axial and lateral strains is uniform and determined by Hooke's law ; however, the latter consisting of axial and lateral strains is a fuaction af thickness af shear band determined by grndieat-dependeat plasticity by cansidering the heterngeneity of quasi- brittle materials. The non- uniform lateral strain due to the fact that shear band was farmed in the middle of specimen was averaged within specimen to precisely assess the volumetric strain. Then, the analytical expression for volumetric strain was verified by comparison with two earlier experimental results for concrete and rack. Finally, a detailed parametric study was carried out to investigate effects of constitutive parameters ( shear band thickness, elastic and softening rnoduli ) and geometrical size of specimen( height and width of specimen ) on the volume dilatancy.
文摘Multi-azimuth walkaway vertical seismic profiling is an established technique for the estimation of in situ slowness surfaces and inferring anisotropy parameters.Normally,this technique requires the assumption of lateral homogeneity,which makes the horizontal slowness components at depths of downhole receivers equal to those measured at the surface.Any violations of this assumption,such as lateral heterogeneity or nonzero dip of intermediate interfaces,lead to distortions in reconstructed slowness surfaces and,consequently,to errors in estimated anisotropic parameters.In this work,we relax the assumption of lateral homogeneity and discuss how to correct vertical seismic profile data for weak lateral heterogeneity.We describe a procedure of downward continuation of recorded traveltimes that accounts for the presence of both vertical inhomogeneity and weak lateral heterogeneity,which produces correct slowness surfaces at depths of downhole receivers,noticing that sufficiently dense receiver coverage along a borehole is required to separate influences of vertical and lateral heterogeneity on measured traveltimes and obtain accurate estimates of the slowness surfaces.Once the slowness surfaces are found and a desired type of anisotropic model to be inverted is selected,the corresponding anisotropic parameters,providing the best fit to the estimated slownesses,can be obtained.We invert the slowness surfaces of P-waves for parameters of the simplest anisotropic model describing dipping fractures(transversely isotropic medium with a tilted symmetry axis).Five parameters of this model,namely,the P-wave velocity V0 in the direction of the symmetry axis,Thomsen's anisotropic coefficients e and d,the tilt n,and the azimuth b of the symmetry axis,can be estimated in a stable manner when maximum source offset is greater than half of receiver depth.
基金JWV acknowledges funding from the NIH(T32MH019112)the SciLifeLab&Wallenberg Data Driven Life Science Program(Grant:KAW 2020.0239)+2 种基金Jeffrey S.Phillips was supported by NIH Grant(R01-AG054519,K01-AG061277)supported by NIH funding(P30 AG072979,P01AG066597,R01NS109260)Penn Institute on Aging,Robinson Family Fund,Peisach Family Fund for FTD Research,and Arking Family Fund.
文摘Background TDP-43 proteinopathies represent a spectrum of neurological disorders,anchored clinically on either end by amyotrophic lateral sclerosis(ALS)and frontotemporal degeneration(FTD).The ALS-FTD spectrum exhibits a diverse range of clinical presentations with overlapping phenotypes,highlighting its heterogeneity.This study was aimed to use disease progression modeling to identify novel data-driven spatial and temporal subtypes of brain atrophy and its progression in the ALS-FTD spectrum.Methods We used a data-driven procedure to identify 13 anatomic clusters of brain volume for 57 behavioral variant FTD(bvFTD;with either autopsy-confirmed TDP-43 or TDP-43 proteinopathy-associated genetic variants),103 ALS,and 47 ALS-FTD patients with likely TDP-43.A Subtype and Stage Inference(SuStaIn)model was trained to identify subtypes of individuals along the ALS-FTD spectrum with distinct brain atrophy patterns,and we related subtypes and stages to clinical,genetic,and neuropathological features of disease.Results SuStaIn identified three novel subtypes:two disease subtypes with predominant brain atrophy in either prefrontal/somatomotor regions or limbic-related regions,and a normal-appearing group without obvious brain atrophy.The limbic-predominant subtype tended to present with more impaired cognition,higher frequencies of pathogenic variants in TBK1 and TARDBP genes,and a higher proportion of TDP-43 types B,E and C.In contrast,the prefrontal/somatomotor-predominant subtype had higher frequencies of pathogenic variants in C9orf72 and GRN genes and higher proportion of TDP-43 type A.The normal-appearing brain group showed higher frequency of ALS relative to ALS-FTD and bvFTD patients,higher cognitive capacity,higher proportion of lower motor neuron onset,milder motor symptoms,and lower frequencies of genetic pathogenic variants.The overall SuStaIn stages also correlated with evidence for clinical progression including longer disease duration,higher King’s stage,and cognitive decline.Additionally,SuStaIn stages dif
基金Climbing Project Continental Dynamics of East Asia (95-S-05) from Ministry of Science and Technology, P. R. China.
文摘A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was deter-mined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the com-plicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.