Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with...Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.展开更多
The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heatin...The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.展开更多
基金Supported by the National Natural Science Foundation of China(No.11171105 and No.11171293)National Social Science Foundation of China(No.10BTJ001)
文摘Count data with excess zeros are often encountered in many medical, biomedical and public health applications. In this paper, an extension of zero-inflated Poisson mixed regression models is presented for dealing with multilevel data set, referred as hierarchical mixture zero-inflated Poisson mixed regression models. A stochastic EM algorithm is developed for obtaining the ML estimates of interested parameters and a model comparison is also considered for comparing models with different latent classes through BIC criterion. An application to the analysis of count data from a Shanghai Adolescence Fitness Survey and a simulation study illustrate the usefulness and effectiveness of our methodologies.
基金The National Key Basic Research Program of China under contract No.2014CB953904the Natural Science Foundation of Guangdong Province under contract No.2015A030311026the National Natural Science Foundation of China under contract Nos 41275145 and 41275060
文摘The weather research and forecasting(WRF) model is a new generation mesoscale numerical model with a fine grid resolution(2 km), making it ideal to simulate the macro-and micro-physical processes and latent heating within Typhoon Molave(2009). Simulations based on a single-moment, six-class microphysical scheme are shown to be reasonable, following verification of results for the typhoon track, wind intensity, precipitation pattern, as well as inner-core thermodynamic and dynamic structures. After calculating latent heating rate, it is concluded that the total latent heat is mainly derived from condensation below the zero degree isotherm, and from deposition above this isotherm. It is revealed that cloud microphysical processes related to graupel are the most important contributors to the total latent heat. Other important latent heat contributors in the simulated Typhoon Molave are condensation of cloud water, deposition of cloud ice, deposition of snow, initiation of cloud ice crystals, deposition of graupel, accretion of cloud water by graupel, evaporation of cloud water and rainwater,sublimation of snow, sublimation of graupel, melting of graupel, and sublimation of cloud ice. In essence, the simulated latent heat profile is similar to ones recorded by the Tropical Rainfall Measuring Mission, although specific values differ slightly.