A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical...A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical thin films coated on the surfaces of monocrystalline silicon substrates, at the wavelength of 3.6-4.1 μm, is measured, when the power density on the surfaces of optical thin films reaches about 3.16 kW/cm^2. The measuring principle and structure of the Closed Cavity is introduced. The temperature curves and balanced temperature rises of the film-suN strate systems under test measured through the experiment is presented in this Letter. The experiments show high reliability, good repeatability and strong practicality. The Closed Cavity measuring platform is applicable for not only absorption measurement but other performance measurement of optical thin films under high power density.展开更多
基金supported by the National Natural Science Foundation of China under Grant Nos.10304025 and 10974255
文摘A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical thin films coated on the surfaces of monocrystalline silicon substrates, at the wavelength of 3.6-4.1 μm, is measured, when the power density on the surfaces of optical thin films reaches about 3.16 kW/cm^2. The measuring principle and structure of the Closed Cavity is introduced. The temperature curves and balanced temperature rises of the film-suN strate systems under test measured through the experiment is presented in this Letter. The experiments show high reliability, good repeatability and strong practicality. The Closed Cavity measuring platform is applicable for not only absorption measurement but other performance measurement of optical thin films under high power density.