Bubbles have very important applications in many fields such as shipbuilding engineering, ocean engineering, mechanical engineering, environmental engineering, chemical engineering, medical science and so on. In this ...Bubbles have very important applications in many fields such as shipbuilding engineering, ocean engineering, mechanical engineering, environmental engineering, chemical engineering, medical science and so on. In this paper, the research status and the development of the bubble dynamics in terms of theory, numerical simulation and experimental technique are reviewed, which cover the underwater explosion bubble, airgun bubble, spark bubble, laser bubble, rising bubble, propeller cavitation bubble, water entry/exit cavitation bubble and bubble dynamics in other fields. Former researchers have done a lot of researches on bubble dynamics and gained fruitful achievements. However, due to the complexity of the bubble motion, many tough mechanical problems remain to be solved. Based on the research progress of bubble dynamics, this paper gives the future research direction of bubble dynamics, aiming to provide references for researches related to bubble dynamics.展开更多
This paper is a continuation of one published in this journal nine months ago. The two papers present a model of cavitational luminescence (CL), multi-bubble sonoluminescence (MBSL), one-bubble sonoluminescence (OBSL)...This paper is a continuation of one published in this journal nine months ago. The two papers present a model of cavitational luminescence (CL), multi-bubble sonoluminescence (MBSL), one-bubble sonoluminescence (OBSL), and laser-induced bubble luminescence (LIBL). The basis of this model is the PeTa (Perel’man-Tatartchenko) effect, a nonequilibrium characteristic radiation under first-order phase transitions, especially vapour condensation. In this model, the main role is given to the liquid, where the evaporation, condensation, flash, and subsequent collapse of bubbles occur. The instantaneous vapour condensation inside the bubble is a reason for the CL/MBSL/OBSL/LIBL. Apparently, the dissolved gases and other impurities in the liquid are responsible for peaks that appear at the background of the main spectrum. They are most likely excited by a shock wave occurred during the collapse. This paper, in contrast to the previous one, presents a slightly expanded model that explains additional experimental data concerning especially the LIBL spectrum. As a result, today we are not aware of any experimental data that would contradict the PeTa model, and we continue to assert that there is no mystery to the CL/MBSL/OBSL/LIBL phenomena, as well as no reason to hope that they can be used for high-temperature chemical reactions, and even more so for a thermonuclear ones.展开更多
This paper is the third in a series published in this journal during 2017-2018. These three papers present various stages in the development of the PeTa model for phenomena of the same physical nature: cavitational lu...This paper is the third in a series published in this journal during 2017-2018. These three papers present various stages in the development of the PeTa model for phenomena of the same physical nature: cavitational luminescence (CL), multi-bubble sonoluminescence (MBSL), single-bubble sonoluminescence (SBSL), and laser-induced bubble luminescence (LIBL). The basis of this model is the PeTa (Perel’man-Tatartchenko) effect—a nonequilibrium characteristic radiation under first-order phase transitions, for instance, vapour condensation. The third iteration of this model “Vapour bubble luminescence” (VBL) is presented in this paper. The essence of this model is as follows: with a local decrease of pressure or an increase of temperature in a tiny volume of the liquid, one or several bubbles filled with vapour will appear. Subsequently, a very rapid increase in pressure or a decrease in temperature of the bubble leads to super-saturation of the vapour inside the bubble, followed by its instantaneous condensation with the emission of condensation energy (this is the PeTa effect). A sharp decrease in pressure causes the collapse of the bubble accompanied by a shock wave in the liquid. VBL model is conveniently represented on the solid-liquid-vapour phase diagram. A better understanding of the physical nature of the phenomena under consideration could help to find their useful applications. To develop this idea further, we propose a design of a cavity-free pulsed laser on the basis of CL/MBSL/SBSL. An analysis of LIBL in cryogenic liquids is also given in this paper.展开更多
Transurethral ureteral lithotripsy (TUL) is a treatment that breaks stones by irradiating a pulsed laser through an optical fiber. Heat and impulsive force of the laser may affect nearby tissues during treatment. A bu...Transurethral ureteral lithotripsy (TUL) is a treatment that breaks stones by irradiating a pulsed laser through an optical fiber. Heat and impulsive force of the laser may affect nearby tissues during treatment. A bubble induced by the pulsed laser plays an important role in laser lithotripsy. It is important to understand effects of the bubble on the surroundings by simulating treatment in a narrow space such as in a ureter. In this study, we observe behaviors of the bubble in the narrow space inside a soft material simulating under <em>i</em><em></em><em>n vivo</em> condition. The bubble formed under various laser irradiation conditions exhibits characteristic behavior, and the surrounding elastic wall is compressed and bulged when the bubble grows and collapses. In the case of bubble formed near the elastic wall, the bubble contacts with the elastic wall during growth, and severe large deformation of the elastic wall is observed at bubble collapse. According to the temperature measurement, a temperature rise of 25<span style="white-space:nowrap;">℃</span> - 30<span style="white-space:nowrap;">℃</span> occurs in the area where the bubbles are in contact. From the above, by presenting the deformation of the elastic wall and temperature increase, we can show useful information to improve the safety for treatment at narrow space.展开更多
基金Project supported by the National Key Research and Development Projects(Grand No.2018YFC0308900)the National Natural Science Foundation of China(Grand No.11672082)
文摘Bubbles have very important applications in many fields such as shipbuilding engineering, ocean engineering, mechanical engineering, environmental engineering, chemical engineering, medical science and so on. In this paper, the research status and the development of the bubble dynamics in terms of theory, numerical simulation and experimental technique are reviewed, which cover the underwater explosion bubble, airgun bubble, spark bubble, laser bubble, rising bubble, propeller cavitation bubble, water entry/exit cavitation bubble and bubble dynamics in other fields. Former researchers have done a lot of researches on bubble dynamics and gained fruitful achievements. However, due to the complexity of the bubble motion, many tough mechanical problems remain to be solved. Based on the research progress of bubble dynamics, this paper gives the future research direction of bubble dynamics, aiming to provide references for researches related to bubble dynamics.
文摘This paper is a continuation of one published in this journal nine months ago. The two papers present a model of cavitational luminescence (CL), multi-bubble sonoluminescence (MBSL), one-bubble sonoluminescence (OBSL), and laser-induced bubble luminescence (LIBL). The basis of this model is the PeTa (Perel’man-Tatartchenko) effect, a nonequilibrium characteristic radiation under first-order phase transitions, especially vapour condensation. In this model, the main role is given to the liquid, where the evaporation, condensation, flash, and subsequent collapse of bubbles occur. The instantaneous vapour condensation inside the bubble is a reason for the CL/MBSL/OBSL/LIBL. Apparently, the dissolved gases and other impurities in the liquid are responsible for peaks that appear at the background of the main spectrum. They are most likely excited by a shock wave occurred during the collapse. This paper, in contrast to the previous one, presents a slightly expanded model that explains additional experimental data concerning especially the LIBL spectrum. As a result, today we are not aware of any experimental data that would contradict the PeTa model, and we continue to assert that there is no mystery to the CL/MBSL/OBSL/LIBL phenomena, as well as no reason to hope that they can be used for high-temperature chemical reactions, and even more so for a thermonuclear ones.
文摘This paper is the third in a series published in this journal during 2017-2018. These three papers present various stages in the development of the PeTa model for phenomena of the same physical nature: cavitational luminescence (CL), multi-bubble sonoluminescence (MBSL), single-bubble sonoluminescence (SBSL), and laser-induced bubble luminescence (LIBL). The basis of this model is the PeTa (Perel’man-Tatartchenko) effect—a nonequilibrium characteristic radiation under first-order phase transitions, for instance, vapour condensation. The third iteration of this model “Vapour bubble luminescence” (VBL) is presented in this paper. The essence of this model is as follows: with a local decrease of pressure or an increase of temperature in a tiny volume of the liquid, one or several bubbles filled with vapour will appear. Subsequently, a very rapid increase in pressure or a decrease in temperature of the bubble leads to super-saturation of the vapour inside the bubble, followed by its instantaneous condensation with the emission of condensation energy (this is the PeTa effect). A sharp decrease in pressure causes the collapse of the bubble accompanied by a shock wave in the liquid. VBL model is conveniently represented on the solid-liquid-vapour phase diagram. A better understanding of the physical nature of the phenomena under consideration could help to find their useful applications. To develop this idea further, we propose a design of a cavity-free pulsed laser on the basis of CL/MBSL/SBSL. An analysis of LIBL in cryogenic liquids is also given in this paper.
文摘Transurethral ureteral lithotripsy (TUL) is a treatment that breaks stones by irradiating a pulsed laser through an optical fiber. Heat and impulsive force of the laser may affect nearby tissues during treatment. A bubble induced by the pulsed laser plays an important role in laser lithotripsy. It is important to understand effects of the bubble on the surroundings by simulating treatment in a narrow space such as in a ureter. In this study, we observe behaviors of the bubble in the narrow space inside a soft material simulating under <em>i</em><em></em><em>n vivo</em> condition. The bubble formed under various laser irradiation conditions exhibits characteristic behavior, and the surrounding elastic wall is compressed and bulged when the bubble grows and collapses. In the case of bubble formed near the elastic wall, the bubble contacts with the elastic wall during growth, and severe large deformation of the elastic wall is observed at bubble collapse. According to the temperature measurement, a temperature rise of 25<span style="white-space:nowrap;">℃</span> - 30<span style="white-space:nowrap;">℃</span> occurs in the area where the bubbles are in contact. From the above, by presenting the deformation of the elastic wall and temperature increase, we can show useful information to improve the safety for treatment at narrow space.