Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework...Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.展开更多
The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the ...The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.展开更多
文摘Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m.
基金This research was supported by National Natural Science Foundation of China(Nos.U1913603,61803251,51775322)National Key Research and Development Program of China(No.2019YFB1310003).
文摘The effectiveness of mobile robot aided for architectural construction depends strongly on its accurate localization ability.Localization of mobile robot is increasingly important for the printing of buildings in the construction scene.Although many available studies on the localization have been conducted,only a few studies have addressed the more challenging problem of localization for mobile robot in large-scale ongoing and featureless scenes.To realize the accurate localization of mobile robot in designated stations,we build an artificial landmark map and propose a novel nonlinear optimization algorithm based on graphs to reduce the uncertainty of the whole map.Then,the performances of localization for mobile robot based on the original and optimized map are compared and evaluated.Finally,experimental results show that the average absolute localization errors that adopted the proposed algorithm is reduced by about 21%compared to that of the original map.