It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the bous...It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .展开更多
针对物流配送需求大、“最后一公里”交付困难等问题,提出带有动态能耗约束的多车辆与多无人机协同配送问题,并以最小化配送时间为目标建立混合整数规划模型(MIP).为解决该问题,设计K-means聚类和最近邻协同的初始解生成算法,并提出基...针对物流配送需求大、“最后一公里”交付困难等问题,提出带有动态能耗约束的多车辆与多无人机协同配送问题,并以最小化配送时间为目标建立混合整数规划模型(MIP).为解决该问题,设计K-means聚类和最近邻协同的初始解生成算法,并提出基于问题领域知识的自适应大规模邻域搜索算法(adaptive large neighborhood search,ALNS).在不同规模算例上的实验结果表明,所提出的算法相比于模拟退火算法、变邻域搜索算法和遗传算法在求解质量和求解效率方面都具有一定的优势,求解质量分别平均提升23.8%、23.3%和5.7%,表明ALNS较对比算法能够更好地平衡全局搜索和局部搜索.此外.灵敏度分析实验表明,无人机载重能力和无人机续航能力是影响包裹配送时间的两个关键因素.展开更多
车辆与无人机联合配送模式在产业界受到青睐,该模式有效地降低了配送成本,但却有极大的调度难度,问题的求解也非常复杂。本文对问题进行明确定义并建立模型,根据问题特性设计了一个自适应大规模邻域搜索(Adaptive Large Neighborhood Se...车辆与无人机联合配送模式在产业界受到青睐,该模式有效地降低了配送成本,但却有极大的调度难度,问题的求解也非常复杂。本文对问题进行明确定义并建立模型,根据问题特性设计了一个自适应大规模邻域搜索(Adaptive Large Neighborhood Search,ALNS)算法,进行了大量的实验的对比和分析。研究结果表明,ALNS算法相比Gurobi在运行时间上有明显优势,结果相同甚至更优;车辆与无人机联合配送模式也较仅卡车配送模式节约了成本。展开更多
多项目资源管理有时需要采用一种资源专享-转移策略,该策略下可更新资源在多项目之间不共享,但在当前项目完工之后其资源可以转移至其它还未开始的项目。针对这一实际问题的理论研究非常有限。考虑活动工期的不确定性,从时差效用函数视...多项目资源管理有时需要采用一种资源专享-转移策略,该策略下可更新资源在多项目之间不共享,但在当前项目完工之后其资源可以转移至其它还未开始的项目。针对这一实际问题的理论研究非常有限。考虑活动工期的不确定性,从时差效用函数视角评价项目调度计划的鲁棒性,在考虑拖期成本-鲁棒性的多目标问题框架下,构建了一个资源专享-转移视角下的多项目资源分配(战术层)与鲁棒调度(运作层)双层决策优化模型。针对模型的NP-hard性质和多目标组合优化特征,设计了一种新的自适应大邻域搜索(adaptive large neighborhood search, ALNS)算法求解模型。该算法采用“项目-缓冲-资源-活动”列表的混合编码表示问题可行解,提出基于四类列表的destroy-repair邻域结构,设计一种超体积指标进行自适应搜索以提高算法性能。最后,为了验证ALNS算法的适用性和有效性,设计一种NSGA-II算法作为比较基准,通过大规模仿真实验对算法性能进行了对比分析,并探索工期不确定水平对多项目调度方案鲁棒性的影响。展开更多
文摘It is difficult to solve complete coverage path planning directly in the obstructed area. Therefore, in this paper, we propose a method of complete coverage path planning with improved area division. Firstly, the boustrophedon cell decomposition method is used to partition the map into sub-regions. The complete coverage paths within each sub-region are obtained by the Boustrophedon back-and-forth motions, and the order of traversal of the sub-regions is then described as a generalised traveling salesman problem with pickup and delivery based on the relative positions of the vertices of each sub-region. An adaptive large neighbourhood algorithm is proposed to quickly obtain solution results in traversal order. The effectiveness of the improved algorithm on traversal cost reduction is verified in this paper through multiple sets of experiments. .
文摘针对物流配送需求大、“最后一公里”交付困难等问题,提出带有动态能耗约束的多车辆与多无人机协同配送问题,并以最小化配送时间为目标建立混合整数规划模型(MIP).为解决该问题,设计K-means聚类和最近邻协同的初始解生成算法,并提出基于问题领域知识的自适应大规模邻域搜索算法(adaptive large neighborhood search,ALNS).在不同规模算例上的实验结果表明,所提出的算法相比于模拟退火算法、变邻域搜索算法和遗传算法在求解质量和求解效率方面都具有一定的优势,求解质量分别平均提升23.8%、23.3%和5.7%,表明ALNS较对比算法能够更好地平衡全局搜索和局部搜索.此外.灵敏度分析实验表明,无人机载重能力和无人机续航能力是影响包裹配送时间的两个关键因素.
文摘车辆与无人机联合配送模式在产业界受到青睐,该模式有效地降低了配送成本,但却有极大的调度难度,问题的求解也非常复杂。本文对问题进行明确定义并建立模型,根据问题特性设计了一个自适应大规模邻域搜索(Adaptive Large Neighborhood Search,ALNS)算法,进行了大量的实验的对比和分析。研究结果表明,ALNS算法相比Gurobi在运行时间上有明显优势,结果相同甚至更优;车辆与无人机联合配送模式也较仅卡车配送模式节约了成本。
文摘多项目资源管理有时需要采用一种资源专享-转移策略,该策略下可更新资源在多项目之间不共享,但在当前项目完工之后其资源可以转移至其它还未开始的项目。针对这一实际问题的理论研究非常有限。考虑活动工期的不确定性,从时差效用函数视角评价项目调度计划的鲁棒性,在考虑拖期成本-鲁棒性的多目标问题框架下,构建了一个资源专享-转移视角下的多项目资源分配(战术层)与鲁棒调度(运作层)双层决策优化模型。针对模型的NP-hard性质和多目标组合优化特征,设计了一种新的自适应大邻域搜索(adaptive large neighborhood search, ALNS)算法求解模型。该算法采用“项目-缓冲-资源-活动”列表的混合编码表示问题可行解,提出基于四类列表的destroy-repair邻域结构,设计一种超体积指标进行自适应搜索以提高算法性能。最后,为了验证ALNS算法的适用性和有效性,设计一种NSGA-II算法作为比较基准,通过大规模仿真实验对算法性能进行了对比分析,并探索工期不确定水平对多项目调度方案鲁棒性的影响。