Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization, However, the laser diffraction and phase Doppler particle analyzers have diff...Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization, However, the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets, especially ira large number of droplets are aspherical. A method to measure size in such large- droplet sprays based on digital imaging with backward illumination was developed, including an image acquisition system and image process programs. Calibration of the measurement system was performed using a dot calibration target with different dot sizes. An experimental setup was designed and established to characterize spray nozzles under different operation loads, as well as different nozzle arrangements. Results show that the droplet size of sprays ranges from dozens of microns to several millimeters. The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations. The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets, which would be difficult to characterize bv other methods.展开更多
对过冷大水滴(Supercooled large droplets,SLD)在不同粒径、过冷度、撞击速度及壁面温度下的撞击结冰特性进行了实验研究。设计了一套SLD发生装置,通过高速摄像机记录SLD撞击结冰过程,分析了各因素对SLD撞击结冰特性及冻结时间的影响...对过冷大水滴(Supercooled large droplets,SLD)在不同粒径、过冷度、撞击速度及壁面温度下的撞击结冰特性进行了实验研究。设计了一套SLD发生装置,通过高速摄像机记录SLD撞击结冰过程,分析了各因素对SLD撞击结冰特性及冻结时间的影响。实验结果表明:SLD撞击壁面后呈现出摊开-回缩后结冰、摊开-回缩时结冰和摊开的过程中结冰3种典型结冰特性,水滴的过冷度及壁面温度对SLD的结冰特性具有显著的影响;SLD撞击后的冻结时间随着水滴直径的减小、过冷度的降低、撞击速度的增加和壁面温度的降低而减小。展开更多
准确模拟过冷大水滴(Supercooled large droplet,SLD)云雾水滴质量分布是最新的结冰适航条款要求,也是当前冰风洞试验技术难点。以14CFR 25部附录O规定冻毛毛雨水滴累计质量分布曲线为目标,在冰风洞中开展过冷大水滴结冰条件模拟研究。...准确模拟过冷大水滴(Supercooled large droplet,SLD)云雾水滴质量分布是最新的结冰适航条款要求,也是当前冰风洞试验技术难点。以14CFR 25部附录O规定冻毛毛雨水滴累计质量分布曲线为目标,在冰风洞中开展过冷大水滴结冰条件模拟研究。基于水滴质量分布要求进行大水滴云雾与小水滴云雾匹配性分析,并在FL-61风洞喷雾系统现有条件下开展大水滴喷嘴喷雾性能测量,将生成的具有不同液态水含量(Liquid water content,LWC)和体积中值直径(Medium volume diameter,MVD)特征的云雾参数组合,在试验段中心位置生成了水滴质量分布曲线接近附录O规定的冻毛毛雨条件。研究结果表明,采用分别模拟相应水滴质量分布的大水滴和小水滴云雾,再进行组合喷雾能够较好地预测和指导在冰风洞中构造大水滴云雾,同时验证了在冰风洞内能够采用两种喷嘴模拟水滴质量为双峰分布云雾条件的可行性。展开更多
The simulated methods for ice accretion on two-dimensional airfoil surface are established completely under the Eulerian framework in supercooled large droplet(SLD) conditions. The two-dimensional code to solve the pa...The simulated methods for ice accretion on two-dimensional airfoil surface are established completely under the Eulerian framework in supercooled large droplet(SLD) conditions. The two-dimensional code to solve the partial differential equations(PDEs) of droplet phase is derived to simulate the impingement characteristic of SLD. Also, several semi-empirical models which explain the droplet-wall interaction are compared and discussed to show respective features when simulating the splashing phenomenon. In particular, a new boundary condition for wall called penetrable wall for splashing droplet(PWSD) is proposed to deal with the impingement of SLD on solid surface, which efficiently improves the accuracy of simulation. Then the improved impingement characteristic of SLD is input into the extended mass and heat transfer model to simulate the ice growth on airfoil surface. The multistep advanced method is carried out to better match the physical phenomenon of ice growth. At last, the simulated results of critical parameters: local droplet collection efficiency and the height of ice growth are compared with the experimental data which verify the applicability of proposed models.展开更多
Changes in flow field around NACA23012 airfoil from a clean condition to a super-cooled large droplet (SLD) condition were simulated, and variations in aerodynamic parameters were calculated using FLUENT. In the cas...Changes in flow field around NACA23012 airfoil from a clean condition to a super-cooled large droplet (SLD) condition were simulated, and variations in aerodynamic parameters were calculated using FLUENT. In the case of numerical simulation for a clean airfoil, flow field characteristics simulated agreed well with theory analysis, indicating that turbulence models and parameters setting are feasible. Aerodynamic parameters for iced airfoil were calculated using the same method and agreed with those measured test data under the same environment in icing wind tunnels by S. Lee. Conclusion is made that the numerical simulation is valid, and it can be an alternative to study ice accretion effects at the SLD condition on airfoil aerodynamics, leading to reduction in research cycle time and cost.展开更多
基于现有大尺寸过冷水滴(supercooled large droplet,SLD)动力学特性,分析水滴变形对阻力的影响.并根据几种典型的反弹/飞溅模型,分析了SLD的阻力变化、反弹、飞溅等对水滴撞击特性的影响,采用软件FENSAP-ICE的飞溅模型和LEWICE 2.0的...基于现有大尺寸过冷水滴(supercooled large droplet,SLD)动力学特性,分析水滴变形对阻力的影响.并根据几种典型的反弹/飞溅模型,分析了SLD的阻力变化、反弹、飞溅等对水滴撞击特性的影响,采用软件FENSAP-ICE的飞溅模型和LEWICE 2.0的反弹模型研究了反弹及飞溅现象对冰形的影响.计算结果显示:水滴撞击前的破碎现象对水滴尺寸分布有较大的影响,进行撞击特性以及冰形计算的时候需进行考虑;SLD破碎、飞溅、反弹降低了局部水收集系数、减小了水滴撞击范围;飞溅现象主要发生在机翼前缘附近区域,反弹主要在撞击边缘区域;水滴直径增加,飞溅现象逐渐减弱,但边缘位置的反弹现象一直很明显.SLD变形带来的阻力影响对冰形及结冰区域影响很小;与未考虑飞溅及反弹现象得到的冰形比较,考虑飞溅及反弹得到冰形前缘区域形状变化不大,但是整体结冰区域减小.展开更多
基金support from the National Natural Science Foundation of China(Grant nos.51206112, 51327803,51176128)the Natural Science Foundation of Shanghai (Grant no.12ZR1446900)Innovation Project of Scientific Research of Shanghai Municipal Education Commission(Grant no. 12YZ110)
文摘Information of droplet size and size distribution lays the basis for investigations of atomization mechanisms and performance optimization, However, the laser diffraction and phase Doppler particle analyzers have difficulty in accurately characterizing sprays with a wide range of droplet sizes and very large droplets, especially ira large number of droplets are aspherical. A method to measure size in such large- droplet sprays based on digital imaging with backward illumination was developed, including an image acquisition system and image process programs. Calibration of the measurement system was performed using a dot calibration target with different dot sizes. An experimental setup was designed and established to characterize spray nozzles under different operation loads, as well as different nozzle arrangements. Results show that the droplet size of sprays ranges from dozens of microns to several millimeters. The superiority of wide load range for such nozzles was indicated by the size-measurement results under half-load to full-load operations. The present study revealed that the image processing technique can be effectively implemented for in-line size measurements of sprays with a wide distribution of droplet size and aspherical droplets, which would be difficult to characterize bv other methods.
文摘对过冷大水滴(Supercooled large droplets,SLD)在不同粒径、过冷度、撞击速度及壁面温度下的撞击结冰特性进行了实验研究。设计了一套SLD发生装置,通过高速摄像机记录SLD撞击结冰过程,分析了各因素对SLD撞击结冰特性及冻结时间的影响。实验结果表明:SLD撞击壁面后呈现出摊开-回缩后结冰、摊开-回缩时结冰和摊开的过程中结冰3种典型结冰特性,水滴的过冷度及壁面温度对SLD的结冰特性具有显著的影响;SLD撞击后的冻结时间随着水滴直径的减小、过冷度的降低、撞击速度的增加和壁面温度的降低而减小。
基金supported in part by the Open Fund of Key Laboratory of Icing and Anti/Deicing(No.IADL20200305)the Scientific Research Project of Tianjin Municipal Education Commission(No.2020KJ036)。
文摘准确模拟过冷大水滴(Supercooled large droplet,SLD)云雾水滴质量分布是最新的结冰适航条款要求,也是当前冰风洞试验技术难点。以14CFR 25部附录O规定冻毛毛雨水滴累计质量分布曲线为目标,在冰风洞中开展过冷大水滴结冰条件模拟研究。基于水滴质量分布要求进行大水滴云雾与小水滴云雾匹配性分析,并在FL-61风洞喷雾系统现有条件下开展大水滴喷嘴喷雾性能测量,将生成的具有不同液态水含量(Liquid water content,LWC)和体积中值直径(Medium volume diameter,MVD)特征的云雾参数组合,在试验段中心位置生成了水滴质量分布曲线接近附录O规定的冻毛毛雨条件。研究结果表明,采用分别模拟相应水滴质量分布的大水滴和小水滴云雾,再进行组合喷雾能够较好地预测和指导在冰风洞中构造大水滴云雾,同时验证了在冰风洞内能够采用两种喷嘴模拟水滴质量为双峰分布云雾条件的可行性。
文摘The simulated methods for ice accretion on two-dimensional airfoil surface are established completely under the Eulerian framework in supercooled large droplet(SLD) conditions. The two-dimensional code to solve the partial differential equations(PDEs) of droplet phase is derived to simulate the impingement characteristic of SLD. Also, several semi-empirical models which explain the droplet-wall interaction are compared and discussed to show respective features when simulating the splashing phenomenon. In particular, a new boundary condition for wall called penetrable wall for splashing droplet(PWSD) is proposed to deal with the impingement of SLD on solid surface, which efficiently improves the accuracy of simulation. Then the improved impingement characteristic of SLD is input into the extended mass and heat transfer model to simulate the ice growth on airfoil surface. The multistep advanced method is carried out to better match the physical phenomenon of ice growth. At last, the simulated results of critical parameters: local droplet collection efficiency and the height of ice growth are compared with the experimental data which verify the applicability of proposed models.
基金supported by the Fund of the CAAC Scientific Research Base of Civil Aviation Flight Technology and Safety (No. F2010KF02)
文摘Changes in flow field around NACA23012 airfoil from a clean condition to a super-cooled large droplet (SLD) condition were simulated, and variations in aerodynamic parameters were calculated using FLUENT. In the case of numerical simulation for a clean airfoil, flow field characteristics simulated agreed well with theory analysis, indicating that turbulence models and parameters setting are feasible. Aerodynamic parameters for iced airfoil were calculated using the same method and agreed with those measured test data under the same environment in icing wind tunnels by S. Lee. Conclusion is made that the numerical simulation is valid, and it can be an alternative to study ice accretion effects at the SLD condition on airfoil aerodynamics, leading to reduction in research cycle time and cost.
文摘基于现有大尺寸过冷水滴(supercooled large droplet,SLD)动力学特性,分析水滴变形对阻力的影响.并根据几种典型的反弹/飞溅模型,分析了SLD的阻力变化、反弹、飞溅等对水滴撞击特性的影响,采用软件FENSAP-ICE的飞溅模型和LEWICE 2.0的反弹模型研究了反弹及飞溅现象对冰形的影响.计算结果显示:水滴撞击前的破碎现象对水滴尺寸分布有较大的影响,进行撞击特性以及冰形计算的时候需进行考虑;SLD破碎、飞溅、反弹降低了局部水收集系数、减小了水滴撞击范围;飞溅现象主要发生在机翼前缘附近区域,反弹主要在撞击边缘区域;水滴直径增加,飞溅现象逐渐减弱,但边缘位置的反弹现象一直很明显.SLD变形带来的阻力影响对冰形及结冰区域影响很小;与未考虑飞溅及反弹现象得到的冰形比较,考虑飞溅及反弹得到冰形前缘区域形状变化不大,但是整体结冰区域减小.