针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了...针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。展开更多
文摘针对交通状态复杂的高速公路交织区域,经验丰富的驾驶人能够通过正确地推断周围车辆的未来运动进行及时的车道变换,这对于实现安全高效的自动驾驶至关重要,然而目前的自动驾驶车辆往往缺乏这种预测能力。为此,基于深度学习理论,提出了一种结合注意力机制和编-解码器结构的交织区车辆强制性变道轨迹预测方法,利用Next Generation Simulation(NGSIM)数据集提取车辆变道过程中的关键特征,并引入碰撞时间(Time to Collision,TTC)和避免碰撞减速度(Deceleration Rate to Avoid a Crash,DRAC)2种风险指标,将变道车辆及其周围车辆视为一个整体状态单元,同时补全状态单元内部不同车辆在横向和纵向上的时空状态特征,从而更有效地刻画车辆间的动态交互行为;然后将不同观测车辆的连续窗口序列输入基于长短期记忆网络(Long Short-term Memory,LSTM)的编-解码器,预测交织区车辆变道的未来运动轨迹,通过添加软注意力模块,使模型能够集中聚焦于影响车辆在不同时刻下位置变化的关键信息,再现了真实交通场景下车辆的变道行为。试验验证表明:基于注意力机制的编-解码器模型与当前流行的卷积长短期记忆网络、极限梯度提升树等模型相比具有更高的轨迹预测精度,在长时域的变道轨迹拟合上有显著的优越性,为辅助和自动驾驶领域的发展提供了新思路。