Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Ov...Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However,annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine(GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985–2017 at an annual frequency. The 1978 data were at 60-m resolution, while the 1985–2017 data were in 30-m resolution.For the 30-m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.展开更多
The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data f...The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium ve展开更多
基金partially supported by the National Research Program of the Ministry of Science and Technology of China(2016YFA0600104)
文摘Impervious surfaces are the most significant feature of human settlements. Timely, accurate, and frequent information on impervious surfaces is critical in both social-economic and natural environment applications. Over the past 40 years, impervious surface areas in China have grown rapidly. However,annual maps of impervious areas in China with high spatial details do not exist during this period. In this paper, we made use of reliable impervious surface mapping algorithms that we published before and the Google Earth Engine(GEE) platform to address this data gap. With available data in GEE, we were able to map impervious surfaces over the entire country circa 1978, and during 1985–2017 at an annual frequency. The 1978 data were at 60-m resolution, while the 1985–2017 data were in 30-m resolution.For the 30-m resolution data, we evaluated the accuracies for 1985, 1990, 1995, 2000, 2005, 2010, and2015. Overall accuracies reached more than 90%. Our results indicate that the growth of impervious surface in China was not only fast but also considerably exceeding the per capita impervious surface area in developed countries like Japan. The 40-year continuous and consistent impervious surface distribution data in China would generate widespread interests in the research and policy-making community. The impervious surface data can be freely downloaded from http://data.ess.tsinghua.edu.cn.
基金National Basic Research Program of China, No.2005CB422006 National Natural Science Foundation o China, No.40331006 No.90202012
文摘The temporal and spatial changes of NDVI on the Tibetan Plateau, as well as the relationship between NDVI and precipitation, were discussed in this paper, by using 8-km resolution multi-temporal NOAA AVHRR-NDVI data from 1982 to 1999. Monthly maximum NDVI and monthly rainfall were used to analyze the seasonal changes, and annual maximum NDVI, annual effective precipitation and growing season precipitation (from April to August) were used to discuss the interannual changes. The dynamic change of NDVI and the corre- lation coefficients between NDVI and rainfall were computed for each pixel. The results are as follows: (1) The NDVI reached the peak in growing season (from July to September) on the Tibetan Plateau. In the northern and western parts of the plateau, the growing season was very short (about two or three months); but in the southern, vegetation grew almost all the year round. The correlation of monthly maximum NDVI and monthly rainfall varied in different areas. It was weak in the western, northern and southern parts, but strong in the central and eastern parts. (2) The spatial distribution of NDVI interannual dynamic change was different too. The increase areas were mainly distributed in southern Tibet montane shrub-steppe zone western part of western Sichuan-eastern Tibet montane coniferous forest zone, western part of northern slopes of Kunlun montane desert zone and southeastern part of southern slopes of Himalaya montane evergreen broad-leaved forest zone; the decrease areas were mainly distributed in the Qaidam montane desert zone, the western and northern parts of eastern Qinghai-Qilian montane steppe zone, southern Qinghai high cold meadow steppe zone and Ngari montane desert-steppe and desert zone. The spatial distribution of correlation coeffi- cient between annual effective rainfall and annual maximum NDVI was similar to the growing season rainfall and annual maximum NDVI, and there was good relationship between NDVI and rainfall in the meadow and grassland with medium ve