Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanost...Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanostatic and potentiostatic operations. The effect of edge diffusion on the delamination process is evaluated. It is found that the diffusion from edge leads to an earlier delamination initiation. The edge effect is significant for active disks with a small aspect ratio, but negligible for the case of large aspect ratio. The edge diffusion is weaker in the potentiostatic operation than in the galvanostatic operation.展开更多
基金supported by the National Science Foundation of China (11102103 and 11172159)the Shanghai Municipal Education Commission, China (13ZZ070)+1 种基金the Graduate School of Shanghai University (SHUCX120123)the Science and Technology Commission of Shanghai Municipality, China(12ZR1410200)
文摘Progressive delamination driven by Li-ion diffusion in elastic disk-like thin film electrodes of Li-ion batteries is modeled based on the cohesive model. Axisymmetric diffusion model is considered under both galvanostatic and potentiostatic operations. The effect of edge diffusion on the delamination process is evaluated. It is found that the diffusion from edge leads to an earlier delamination initiation. The edge effect is significant for active disks with a small aspect ratio, but negligible for the case of large aspect ratio. The edge diffusion is weaker in the potentiostatic operation than in the galvanostatic operation.