期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Calibration of a γ-Re_θ transition model and its validation in low-speed flows with high-order numerical method 被引量:9
1
作者 Wang Yuntao Zhang Yulun +1 位作者 Li Song Meng Dehong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第3期704-711,共8页
Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonline... Abstract Based on the Reynolds-averaged Navier--Stokes (RANS) equations and structured grid technology, the calibration and validation of Y-Reo transition model is preformed with fifth-order weighted compact nonlinear scheme (WCNS), and the purpose of the present work is to improve the numerical accuracy for aerodynamic characteristics simulation of low-speed flow with transition model on the basis of high-order numerical method study. Firstly, the empirical correlation functions involved in the Y-Reo transition model are modified and calibrated with experimental data of turbulent flat plates. Then, the grid convergence is studied on NLR-7301 two-element airfoil with the modified empirical correlation. At last, the modified empirical correlation is validated with NLR-7301 two-element airfoil and high-lift trapezoidal wing from transition location, velocity pro- file in boundary layer, surface pressure coefficient and aerodynamic characteristics. The numerical results illustrate that the numerical accuracy of transition length and skin friction behind transition location are improved with modified empirical correlation function, and obviously increases the numerical accuracy of aerodynamic characteristics prediction for typical transport configurations in low-speed range. 展开更多
关键词 Aerodynamic characteristicsFinite difference scheme High-order method laminar to turbulenttransition RANS
原文传递
Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion 被引量:9
2
作者 CHEN XianFeng SUN JinHua LIU Yi LIU XuanYa CHEN SiNing LU ShouXiang 《Chinese Science Bulletin》 SCIE EI CAS 2007年第5期685-691,共7页
In order to explore the flame structure and propagation behavior of premixed propane/air in the transi-tion from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record ... In order to explore the flame structure and propagation behavior of premixed propane/air in the transi-tion from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record the photograph of flame propagation process in a semi-vented pipe. Meanwhile, the super-thin thermocouple and ionization current probe methods were applied to detect the temperature distribution and reaction intensity of combustion reaction. The characteristics of propane/air flame propagation and microstructure were analyzed in detail by the experimental results coupled with chemical reaction thermodynamics. In the test, the particular tulip flame behavior and the formation process in the laminar-turbulent transition were disclosed clearly. From the Schlieren images and iron current results, one conclusion can be drawn that the small-scale turbulent combustion also appeared in laminar flame, which made little influence on the flame shape, but increased the flame thickness obviously. 展开更多
关键词 丙烷/空气预混火焰 火焰结构 层流焰 紊流燃烧 过渡 可燃气体爆炸
原文传递
Interpretation of gas-film cooling against aero-thermal heating for high-speed vehicles
3
作者 Ming DONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1615-1630,共16页
The possible application of the film-cooling technique against aero-thermal heating for surfaces of high-speed flying vehicles is discussed. The technique has been widely used in the heat protection of gas turbine bla... The possible application of the film-cooling technique against aero-thermal heating for surfaces of high-speed flying vehicles is discussed. The technique has been widely used in the heat protection of gas turbine blades. It is shown in this paper that, by applying this technique to high-speed flying vehicles, the working principle is fundamentally different. Numerical simulations for two model problems axe performed to support the argument. Besides the heat protection, the appreciable drag reduction is found to be another favorable effect. For the second model problem, i.e., the gas cooling for an optical window on a sphere cone, the hydrodynamic instability of the film is studied by the linear stability analysis to observe possible occurrence of laminar-turbulent transition. 展开更多
关键词 film cooling aero-thermal heating numerical simulation laminar-turbulenttransition linear stability analysis
下载PDF
Numerical Tools for the Control of the Unsteady Heating of an Airfoil
4
作者 Franqoise Masson Francisco Chinesta +4 位作者 Adrien Leygue Chady Ghnatios Elias Cueto Laurent Dala Craig Law 《Journal of Mechanics Engineering and Automation》 2013年第6期339-351,共13页
This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing ski... This paper concerns the real time control of the boundary layer on an aircraft wing. This new approach consists in heating the surface in an unsteady regime using electrically resistant strips embedded in the wing skin. The control of the boundary layer's separation and transition point will provide a reduction in friction drag, and hence a reduction in fuel consumption. This new method consists in applying the required thermal power in the different strips in order to ensure the desired temperatures on the aircraft wing. We also have to determine the optimum size of these strips (length, width and distance between two strips). This implies finding the best mathematical model corresponding to the physics enabling us to facilitate the calculation for any type of material used for the wings. Secondly, the heating being unsteady, and, as during a flight the flow conditions or the ambient temperatures vary, the thermal power needed changes and must be chosen as fast as possible in order to ensure optimal operating conditions. 展开更多
关键词 Model reduction PGD (proper generalized decomposition) heating of an airfoil boundary layers laminar-turbulenttransition and separation point friction drag unsteady heating.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部