Organic-rich lacustrine shales are widely distributed in China and have significant potential for unconventional shale gas and oil production although the primary factors controlling the deposition of lacustrine shale...Organic-rich lacustrine shales are widely distributed in China and have significant potential for unconventional shale gas and oil production although the primary factors controlling the deposition of lacustrine shale are disputed. This work clarifies the different characteristics of tectonic evolution and shale among sub-basins in the Bohai Bay Basin in eastern China as a case study by studying basal subsidence, tectonic subsidence rate, basin extensional proportions and shale chemical characteristics. The paper summarizes the correlation between structure and shale deposition, and concludes that tectonic activity is the primary controlling factor for shale development. Episodic tectonic activity controls not only the timing of shale deposition(with the greatest shale deposition occurring primarily during the peak period of basin tectonic activity) but also the spatial distribution of shale(located mainly in areas of maximum subsidence), the migration pattern of shale(conforming to that of the basin subsidence center), and shale strata thickness. Tectonic activity also affects the total organic carbon content and organic matter type in shale. When the tectonic activity was the most active and basal subsidence was the maximum, the total organic carbon content of the shale reached its highest value with organic matter type mainly Type I. As tectonic activity weakened, the total organic carbon content decreased, and the organic matter type changed from Type I to Type I-III.展开更多
Due to heterogeneous pore distributions within shales,petrophysical properties of shales determined by scanning electron microscopy(SEM) and X-ray computed tomography(CT) methods strongly depend on the observed domain...Due to heterogeneous pore distributions within shales,petrophysical properties of shales determined by scanning electron microscopy(SEM) and X-ray computed tomography(CT) methods strongly depend on the observed domain size(analysis scale). In this paper,the influence of the analysis scale on areal and bulk porosities and pore size distribution(PSD) for lacustrine shales from the Dongying sag of Bohai Bay Basin,China were investigated using broad ion beam(BIB)-SEM and X-ray CT methods.The BIB-SEM cross-sections with high imaging resolution(10 nm/pixel) and a large field of view(>1 mm2)mainly describe the 2 D nanoscale pore system in the two shales(samples F41#-2 and Y556#-1),while CTbased 3 D reconstructions with resolutions of 0.42(F41#-1) and 0.5 μm/pixel(H172#-1) reflect the 3 D submicron pore system. The results indicate that the areal(bulk) porosity exhibits a multiple power-law distribution with increasing analysis area(volume),which can be used to extrapolate the porosity of a given area(volume). Based on SEM and CT investigations,the sizes of the minimum representative elementary areas(REAs) and volumes(REVs) were determined respectively,which are closely associated with the heterogeneousness of the pore system. Minimum REAs are proposed to be 2.93×10~4(F41#-2) and 0.91×10~4μm2(Y556#-1),and minimum REVs are 0.016(F41#-1) and 0.027 mm^3(H172#-1). As the analyzed areas(volumes) are larger than the minimum REA(REV),obtained 2 D(3 D) PSDs are comparable to each other and can be considered to reflect the shale PSD. These results provide insights into the porosity and PSD characterization of shales by SEM and X-ray CT methods.展开更多
To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, C...To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, China) with vitrinite reflectance of 0.64% to 1.34%. Low-pressure gas adsorption experiments were conducted on the samples before and after extraction. The pore structure parameters were calculated from the gas adsorption data. The results show complex changes to the pore volumes and surface areas after extraction. The pore development of both the initial and extracted samples is strongly controlled by total organic carbon (TOC) content. Micropores developed mainly in organic matter (OM), while mesopores and macropores predominantly developed in fractions other than OM. The influence of EOM on micropores is stronger than on mesopores and macropores. Organic solvents with a higher boiling point should be used to explore the effect of EOM on pore structure in the future.展开更多
Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by usi...Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.展开更多
基金supported by China Postdoctoral Science Foundation (No. 2013M530680)the foundation of the Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences, Wuhan) of the Ministry of Education (No.TPR-2010-12)
文摘Organic-rich lacustrine shales are widely distributed in China and have significant potential for unconventional shale gas and oil production although the primary factors controlling the deposition of lacustrine shale are disputed. This work clarifies the different characteristics of tectonic evolution and shale among sub-basins in the Bohai Bay Basin in eastern China as a case study by studying basal subsidence, tectonic subsidence rate, basin extensional proportions and shale chemical characteristics. The paper summarizes the correlation between structure and shale deposition, and concludes that tectonic activity is the primary controlling factor for shale development. Episodic tectonic activity controls not only the timing of shale deposition(with the greatest shale deposition occurring primarily during the peak period of basin tectonic activity) but also the spatial distribution of shale(located mainly in areas of maximum subsidence), the migration pattern of shale(conforming to that of the basin subsidence center), and shale strata thickness. Tectonic activity also affects the total organic carbon content and organic matter type in shale. When the tectonic activity was the most active and basal subsidence was the maximum, the total organic carbon content of the shale reached its highest value with organic matter type mainly Type I. As tectonic activity weakened, the total organic carbon content decreased, and the organic matter type changed from Type I to Type I-III.
基金supported by the National Natural Science Foundation of China (Nos. 41602131, 41330313, 41572122, and 41672130)the Fundamental Research Funds for the Central Universities of China (Nos. 17CX02074, 15CX02086A, and 17CX06036)the Research Project Funded by the SINOPEC Corp. (No. P17027-3)
文摘Due to heterogeneous pore distributions within shales,petrophysical properties of shales determined by scanning electron microscopy(SEM) and X-ray computed tomography(CT) methods strongly depend on the observed domain size(analysis scale). In this paper,the influence of the analysis scale on areal and bulk porosities and pore size distribution(PSD) for lacustrine shales from the Dongying sag of Bohai Bay Basin,China were investigated using broad ion beam(BIB)-SEM and X-ray CT methods.The BIB-SEM cross-sections with high imaging resolution(10 nm/pixel) and a large field of view(>1 mm2)mainly describe the 2 D nanoscale pore system in the two shales(samples F41#-2 and Y556#-1),while CTbased 3 D reconstructions with resolutions of 0.42(F41#-1) and 0.5 μm/pixel(H172#-1) reflect the 3 D submicron pore system. The results indicate that the areal(bulk) porosity exhibits a multiple power-law distribution with increasing analysis area(volume),which can be used to extrapolate the porosity of a given area(volume). Based on SEM and CT investigations,the sizes of the minimum representative elementary areas(REAs) and volumes(REVs) were determined respectively,which are closely associated with the heterogeneousness of the pore system. Minimum REAs are proposed to be 2.93×10~4(F41#-2) and 0.91×10~4μm2(Y556#-1),and minimum REVs are 0.016(F41#-1) and 0.027 mm^3(H172#-1). As the analyzed areas(volumes) are larger than the minimum REA(REV),obtained 2 D(3 D) PSDs are comparable to each other and can be considered to reflect the shale PSD. These results provide insights into the porosity and PSD characterization of shales by SEM and X-ray CT methods.
基金funded by the National Science Foundation of China(41502144,41503034)the Foundation of the State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(No.PRP/open-1612)+2 种基金the Fund of the Education Department of Sichuan Province(16ZA0075)the Youth Scientific Innovation Team of Hydrocarbon Accumulation and Geochemistry,Southwest Petroleum University(2015CXTD02)the Sichuan Province University Scientific Innovation Team Construction Project(USITCP)
文摘To investigate the influence of extractable organic matter (EOM) on pore evolution of lacustrine shales, Soxhlet extraction, using dichloromethane, was performed on a series of Chang 7 shale samples (Ordos Basin, China) with vitrinite reflectance of 0.64% to 1.34%. Low-pressure gas adsorption experiments were conducted on the samples before and after extraction. The pore structure parameters were calculated from the gas adsorption data. The results show complex changes to the pore volumes and surface areas after extraction. The pore development of both the initial and extracted samples is strongly controlled by total organic carbon (TOC) content. Micropores developed mainly in organic matter (OM), while mesopores and macropores predominantly developed in fractions other than OM. The influence of EOM on micropores is stronger than on mesopores and macropores. Organic solvents with a higher boiling point should be used to explore the effect of EOM on pore structure in the future.
基金jointly supported by grants from the Natural Science Foundation of China(grants No.41402110 and 41330313)“Fundamental Research Funds for the Central Universities”(grants No.14CX05017A and 13CX05013A)
文摘Lacustrine shale from the Qingshankou Formatin of Songliao basin and the Shahejie Formation of Bohai Bay basin, and marine shale from the lower Cambrian Jinmenchong Formation of Qiannan depression were analysed by using rock pyrolysis, TOC (total organic carbon), XRD (X-ray diffraction), SEM (scanning electron microscope), FE-SEM (field emission scanning electron microscope), high pressure mercury intrusion, and low pressure N2 and CO2 gas adsorption experiments, in aim to reveal their reservoir features. The results show that: (1) the width of micro-pores of all the studied samples mainly ranges from 0.45 to 0.7 nm indicated by CO2 isotherms, and the width of meso-pores is less than 10 nm, with type IV adsorption isotherms and type H2 hysteresis loop, indicative of "ink-bottle"-shaped pores. Good correlations exist among pore volume, surface area and averaged pore diameter, and a good positive correlation exists between micro-pore volume and TOC content; however, there is no obvious correlation between meso-pore volume and TOC content; (2) interparticle pores, pores among the edge of mineral grains and organic matter pores were all identified in marine and lacustrine shale, among which the interparticle pores may be influence by dissolution effect. Not all bitumen develops organic matter pore, and only high to over mature bitumen present pores. Now the description methods of micrometer scale pores developed in shale are very lack. Micro- fractures developed in Jiyang depression and dissolution interparticle pores developed in Songliao Basin should be the accumulation sites for shale oil in lacustrine shale, and can be as sweet spots.