期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
基于标签特征和相关性的多标签分类算法 被引量:15
1
作者 李锋 杨有龙 《计算机工程与应用》 CSCD 北大核心 2019年第4期48-55,共8页
针对标签特有特征和标签相关性的有效利用,提出了一种新的多标签算法LSFLC,它可以有效地集成标签特有特征和标签相关性。首先,对于每个标签,通过重采样技术生成新的正类实例以扩充其正类实例的数目;其次,通过特征映射函数将原始特征空... 针对标签特有特征和标签相关性的有效利用,提出了一种新的多标签算法LSFLC,它可以有效地集成标签特有特征和标签相关性。首先,对于每个标签,通过重采样技术生成新的正类实例以扩充其正类实例的数目;其次,通过特征映射函数将原始特征空间转换为特定的特征空间,得到每个标签的标签特征集;然后,对于每个标签,找到与其最相关标签,通过复制该标签的正类实例来扩大标签特征集,这不仅丰富了标签的信息,而且在一定程度上改善了类不平衡的问题;最后,对于不同的数据集进行实验分析,实验结果表明该算法的分类效果更好。 展开更多
关键词 多标签学习 局部标签相关性 标签特有特征 相关实例补充
下载PDF
基于标签相关性的类属属性多标签分类算法 被引量:12
2
作者 牟甲鹏 蔡剑 +1 位作者 余孟池 徐建 《计算机应用研究》 CSCD 北大核心 2020年第9期2656-2658,2673,共4页
多标签学习中一个样本可同时属于多个类别标签,每个标签都可能拥有反映该标签特定特点的特征,即类属属性,目前已经出现了基于类属属性的多标签分类算法LIFT。针对LIFT算法中未考虑标签之间相互关系的问题,提出一种基于标签相关性的类属... 多标签学习中一个样本可同时属于多个类别标签,每个标签都可能拥有反映该标签特定特点的特征,即类属属性,目前已经出现了基于类属属性的多标签分类算法LIFT。针对LIFT算法中未考虑标签之间相互关系的问题,提出一种基于标签相关性的类属属性多标签分类算法CLLIFT。该算法使用标签距离度量标签之间的相关性,通过在类属属性空间附加相关标签的方式完成标签相关性的引入,以达到提升分类性能的目的。在四个多标签数据集上的实验结果表明,所提算法与LIFT算法相比在多个多标签评价指标上平均提升21.1%。 展开更多
关键词 标签相关性 类属属性 多标签学习
下载PDF
类不平衡的公共和标签特定特征多标签分类
3
作者 张海翔 李培培 胡学钢 《计算机技术与发展》 2024年第2期46-52,共7页
多标签分类主要解决实例数据对应多个标签问题,现有多标签方法大多利用所有特征组成的相同数据表示来区分所有标签,由于每个标签自身特点不同,统一的特征不能完全区分标签,给模型训练带来负面作用和时间成本增加,如何利用对每个标签而... 多标签分类主要解决实例数据对应多个标签问题,现有多标签方法大多利用所有特征组成的相同数据表示来区分所有标签,由于每个标签自身特点不同,统一的特征不能完全区分标签,给模型训练带来负面作用和时间成本增加,如何利用对每个标签而言最具有辨别力的特征来提高模型分类性能成为一种难题,此外现实中类不平衡问题同样会导致多标签学习模型的性能下降。基于此,提出一种类不平衡的公共和标签特定特征多标签分类方法。首先,找到种子实例的最近邻居,然后通过插值技术得到合成实例的特征来解决类不平衡问题;其次,为了找出对每个标签最具代表性的特征,引入l1,l2,1正则化约束系数矩阵提取标签的特定特征和公共特征;最后,使用标签相关性实现关联标签的模型输出相似,实例相关性保证关联特征共享对应标签分布信息提高分类性能。实验表明所提方法与其他多标签分类方法相比获得了更好的分类精度。 展开更多
关键词 多标签分类 类不平衡 公共特征 标签特定特征 标签相关性
下载PDF
基于局部标记相关性的标记分布学习算法
4
作者 黄俊 田佳洪 《计算机工程与设计》 北大核心 2023年第2期541-547,共7页
针对大多数现有的标记分布学习算法从全局角度利用标记相关性,忽略了仅存于部分示例范围内的局部标记相关性,同时,算法性能会受到无关和冗余特征干扰的问题,提出一种基于局部标记相关性的标记分布学习算法(LDL-LLC)。通过对训练数据进... 针对大多数现有的标记分布学习算法从全局角度利用标记相关性,忽略了仅存于部分示例范围内的局部标记相关性,同时,算法性能会受到无关和冗余特征干扰的问题,提出一种基于局部标记相关性的标记分布学习算法(LDL-LLC)。通过对训练数据进行分组,将每组训练数据的标记相关性约束在标记输出上,探索和利用局部标记相关性,引入特征选择常用的范数约束,学习标记私有特征和共享特征。在多个真实标记分布数据集上的对比实验结果表明,LDL-LLC算法性能良好。 展开更多
关键词 标记分布学习 局部标记相关性 无关特征 冗余特征 特征选择 标记私有特征 共享特征
下载PDF
特征特定标记关联挖掘的类属属性学习 被引量:3
5
作者 程玉胜 张露露 +1 位作者 王一宾 裴根生 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期34-47,共14页
在多标记分类中,某个标记可能只由其自身的某些特有属性决定,这些特定属性称之为类属属性.利用类属属性进行多标记分类,可以有效避免某些无用特征影响构建分类模型的性能.然而类属属性算法仅从标记角度去提取重要特征,而忽略了从特征角... 在多标记分类中,某个标记可能只由其自身的某些特有属性决定,这些特定属性称之为类属属性.利用类属属性进行多标记分类,可以有效避免某些无用特征影响构建分类模型的性能.然而类属属性算法仅从标记角度去提取重要特征,而忽略了从特征角度去提取重要标记.事实上,如果能从特征角度提前关注某些标记,更容易获取这些标记的特有属性.基于此,提出了一种新型类属属性学习的多标记分类算法,将从特征层面提取重要标记与从标记层面提取重要特征进行双向联合学习.首先,为了保证模型求解速度与精度都较为合理,采用极限学习机构建学习模型.随后,将弹性网络正则化理论添加到极限学习机损失函数中,使用互信息构建特征标记相关性矩阵作为L 2正则化项,而L 1正则化项即提取类属属性.该学习模型改进了类属属性在多标记学习中的不足,通过在标准多标记数据集上与多个先进算法对比,实验结果表明了所提模型的合理性和有效性. 展开更多
关键词 多标记学习 类属属性 特征特定标记 极限学习机 标记相关性
下载PDF
A Multi-Label Classification Algorithm Based on Label-Specific Features 被引量:2
6
作者 QU Huaqiao ZHANG Shichao +1 位作者 LIU Huawen ZHAO Jianmin 《Wuhan University Journal of Natural Sciences》 CAS 2011年第6期520-524,共5页
Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and... Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches. 展开更多
关键词 multi-label classification label-specific features feature's value DENSITY
原文传递
结合类属特征及因果发现的序列优化分类器链 被引量:1
7
作者 罗森林 王海州 潘丽敏 《北京理工大学学报》 EI CAS CSCD 北大核心 2021年第12期1293-1299,共7页
分类器链是利用标签间相关性实现挖掘特定对象多维标记信息的重要多标签分类方法.面向现有分类器链算法,针对各标签的基学习器均在完整特征空间中训练导致学习特征冗余,以及因标签学习顺序随机且分类器链训练过程单向无反馈导致的标签... 分类器链是利用标签间相关性实现挖掘特定对象多维标记信息的重要多标签分类方法.面向现有分类器链算法,针对各标签的基学习器均在完整特征空间中训练导致学习特征冗余,以及因标签学习顺序随机且分类器链训练过程单向无反馈导致的标签间相关信息利用不充分等问题,本文提出一种结合类属特征及因果发现的序列优化分类器链.该方法采用类内仿射传播聚类为每个基学习器构建高级结构化特征,减少冗余信息;利用条件熵准则挖掘标签间因果关系,优化学习序列提高对标签间相关信息的利用程度.在多个公开数据集的实验结果表明,序列优化分类器链有效增强了单节点学习效果以及对多标签间关联信息的利用,有效提升了多标签分类效果,实用价值高. 展开更多
关键词 多标签分类 分类器链 类属特征 因果关系 仿射传播
下载PDF
基于引力模型的类属属性多标签分类算法
8
作者 陈永波 李巧勤 刘勇国 《计算机工程与设计》 北大核心 2022年第6期1637-1643,共7页
为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算... 为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算法G-GMLIFT(global-gravitation model based label specific features)和L-GMLIFT(local-gravitation model based label specific features)。结合引力模型,利用近邻集合的特征和标签信息,构成基于相互作用的类属属性空间,度量数据间的相互作用。仿真结果表明,与现有方法相比,所提算法具有较好的分类性能。 展开更多
关键词 多标签分类 类属属性 引力模型 近邻密度 近邻权重
下载PDF
多类别相关性结合的类属属性多标签学习 被引量:3
9
作者 吴安奇 高清维 +1 位作者 孙冬 卢一相 《模式识别与人工智能》 EI CSCD 北大核心 2020年第8期705-715,共11页
现有的类属属性学习方法在提取类别标签的特征时,大多仅单一考虑标签间的相关性,忽略实例和实例间以及特征与特征间的相关性,可能会降低分类精度.为了解决此问题,文中设计多类别相关性结合的类属属性多标签学习算法,考虑标签相关性、特... 现有的类属属性学习方法在提取类别标签的特征时,大多仅单一考虑标签间的相关性,忽略实例和实例间以及特征与特征间的相关性,可能会降低分类精度.为了解决此问题,文中设计多类别相关性结合的类属属性多标签学习算法,考虑标签相关性、特征相关性和实例相关性.利用标签之间的余弦相似度计算标签相关性,构建相似图矩阵计算特征相关性和实例相关性.文中算法紧凑地选择标签的类属属性,提高分类精度,有效解决多标签分类遇到的维度过大问题. 展开更多
关键词 多标签分类 类属属性学习 实例相关性 特征相关性 标签相关性
下载PDF
基于标记密度分类间隔面的组类属属性学习 被引量:1
10
作者 王一宾 裴根生 程玉胜 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1179-1187,共9页
类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低... 类属属性学习避免相同属性预测全部标记,是一种提取各标记独有属性进行分类的一种框架,在多标记学习中得到广泛的应用。而针对标记维度较大、标记分布密度不平衡等问题,已有的基于类属属性的多标记学习算法普遍时间消耗大、分类精度低。为提高多标记分类性能,该文提出一种基于标记密度分类间隔面的组类属属性学习(GLSFL-LDCM)方法。首先,使用余弦相似度构建标记相关性矩阵,通过谱聚类将标记分组以提取各标记组的类属属性,减少计算全部标记类属属性的时间消耗。然后,计算各标记密度以更新标记空间矩阵,将标记密度信息加入原标记中,扩大正负标记的间隔,通过标记密度分类间隔面的方法有效解决标记分布密度不平衡问题。最后,通过将组类属属性和标记密度矩阵输入极限学习机以得到最终分类模型。对比实验充分验证了该文所提算法的可行性与稳定性。 展开更多
关键词 多标记分类 标记密度 组类属属性 极限学习机 分类间隔面
下载PDF
不稳定型心绞痛患者不良结局的多标签预测模型构建
11
作者 王紫芸 张瑜 +2 位作者 韩港飞 闫晶晶 田晶 《中国循证心血管医学杂志》 2024年第6期651-656,共6页
目的不稳定型心绞痛患者不良结局具有多维性的特点,传统统计方法多对不稳定型心绞痛的单维结局进行预测,无法解决多标签数据特征冗余、标签不平衡等问题。本文尝试采用多标签合成少数类过采样技术(MLSMOTE)算法进行处理,并构建多标签预... 目的不稳定型心绞痛患者不良结局具有多维性的特点,传统统计方法多对不稳定型心绞痛的单维结局进行预测,无法解决多标签数据特征冗余、标签不平衡等问题。本文尝试采用多标签合成少数类过采样技术(MLSMOTE)算法进行处理,并构建多标签预测模型,以提高其预测性能。方法收集来自2017年1月~2020年5月于山西医科大学第二医院收治的不稳定型心绞痛患者纳入本研究。采用回顾性和前瞻性相结合的临床队列收集患者信息。以不稳定型心绞痛患者发生心肌梗死、心力衰竭、血运重建、脑卒中、死亡为结局,使用改进Relief F的多标记特征选择(RF-ML)算法选择多标签特征子集,MLSMOTE算法进行多标签不平衡处理,在此基础上构建分类器链(CC)的多标签分类模型,选取随机森林、朴素贝叶斯、支持向量机、K近邻(K-nearest neighbors,KNN)算法等为基分类器进行比较,并评价模型性能。结果采用多标签特征选择方法RF-ML进行变量筛选,最终筛选出18个变量纳入模型,分别为:尿酸、肌酐、血小板、氯、血红蛋白、收缩压、舒张压、心率、钠、血清总胆红素、血清间接胆红素、白蛋白、血清总胆汁酸、体质指数(BMI)、血糖、血清直接胆红素、低密度脂蛋白胆固醇、高密度脂蛋白胆固醇。采用多标签不平衡算法MLSMOTE对此次研究涉及的5个标签:心肌梗死、心力衰竭、血运重建、脑卒中、死亡进行不平衡处理。采用不平衡处理后的数据,选择随机森林、朴素贝叶斯、支持向量机、KNN作为基分类器,建立CC模型,结果显示以朴素贝叶斯为基分类器的CC模型在Ranking loss、Macro_AUC、Micro_AUC、Macro_F1、Micro_F1、Macro_recall六个指标上的表现性能均优于其他模型。结论本研究采用MLSMOTE算法进行不平衡处理,使原始标签的不平衡率得到一定改善。运用均衡化数据建立CC模型,充分考虑了标签的特定特� 展开更多
关键词 不稳定型心绞痛 多标签特征选择 多标签不平衡 标签特定特征
下载PDF
基于标签特定特征的多目标回归稀疏集成方法 被引量:4
12
作者 刘洪涛 李航 +1 位作者 王进 李鸽鸽 《电子学报》 EI CAS CSCD 北大核心 2020年第5期906-913,共8页
多目标回归学习是指同时学习多个相关的回归任务,其主要挑战来自于对输入要素和输出目标变量之间的基础关系进行建模以及对目标间的相关性进行探索.针对这两个挑战,本文提出了一种基于标签特定特征的多目标回归稀疏集成方法,通过探索目... 多目标回归学习是指同时学习多个相关的回归任务,其主要挑战来自于对输入要素和输出目标变量之间的基础关系进行建模以及对目标间的相关性进行探索.针对这两个挑战,本文提出了一种基于标签特定特征的多目标回归稀疏集成方法,通过探索目标间的相关性,为每个目标构建其独特的标签特定特征,提高算法整体的预测精度;同时设计一种稀疏性聚合函数对不同的回归方法进行集成,从而处理输入与输出间的复杂关系.在18个数据集上与有代表性的多目标回归方法进行对比实验,充分证明了本文方法的有效性与竞争性. 展开更多
关键词 多目标回归 稀疏集成 标签特定特征 目标间关联
下载PDF
基于标记特定特征和相关性的ML-KNN改进算法 被引量:2
13
作者 李永 许鹏 《计算机系统应用》 2021年第2期125-131,共7页
目前大部分已经存在的多标记学习算法在模型训练过程中所采用的共同策略是基于相同的标记属性特征集合预测所有标记类别.但这种思路并未对每个标记所独有的标记特征进行考虑.在标记空间中,这种标记特定的属性特征对于区分其它类别标记... 目前大部分已经存在的多标记学习算法在模型训练过程中所采用的共同策略是基于相同的标记属性特征集合预测所有标记类别.但这种思路并未对每个标记所独有的标记特征进行考虑.在标记空间中,这种标记特定的属性特征对于区分其它类别标记和描述自身特性是非常有帮助的信息.针对这一问题,本文提出了基于标记特定特征和相关性的ML-KNN改进算法MLF-KNN.不同于之前的多标记算法直接在原始训练数据集上进行操作,而是首先对训练数据集进行预处理,为每一种标记类别构造其特征属性,在得到的标记属性空间上进一步构造L_(1)-范数并进行优化从而引入标记之间的相关性,最后使用改进后的ML-KNN算法进行预测分类.实验结果表明,在公开数据集image和yeast上,本文提出的算法MLF-KNN分类性能优于ML-KNN,同时与其它另外3种多标记学习算法相比也表现出一定的优越性. 展开更多
关键词 多标记学习 标记特定特征 标记相关性 多标记K近邻 L_(1)-范数
下载PDF
基于类属属性的藏医尿诊证型辨识 被引量:1
14
作者 杜兆威 刘勇国 +4 位作者 宋继辉 张云 杨尚明 仁青东主 张艺 《世界科学技术-中医药现代化》 CSCD 北大核心 2022年第10期3753-3759,共7页
目的藏医证型辨识的准确性是有效地指导临床实践的重要因素,对进一步确定诊疗标准起着很大作用。针对传统藏医尿诊依赖临床医生的丰富经验并存在主观差异的问题,开展基于尿诊医案信息的证型分类的客观化研究,基于类属属性构建证型多标... 目的藏医证型辨识的准确性是有效地指导临床实践的重要因素,对进一步确定诊疗标准起着很大作用。针对传统藏医尿诊依赖临床医生的丰富经验并存在主观差异的问题,开展基于尿诊医案信息的证型分类的客观化研究,基于类属属性构建证型多标签分类模型,实现藏医尿诊辅助证型辨识。方法收集915例青海省藏医院和青海久美藏医院住院患者的尿诊医案信息,建立藏医尿诊医案数据库,根据藏医理论对尿诊医案信息进行规范化和编码处理,以不同证型标签的正负样本中心为基础基于类属属性构建分类预测模型。结果所构建模型根据患者医案信息进行多标签分类,获得证型辨识结果(汉明损失0.2111、排序损失0.3055、0-1损失0.3579、覆盖率0.7066、平均精准度81.71%。)结论模型在藏医尿诊证型辨识问题中表现出应用价值,为藏医尿诊的计算机辅助诊疗提供新思路与方法。 展开更多
关键词 藏医证型 尿诊 类属属性 多标签分类
下载PDF
基于聚类提升树的多标签学习 被引量:2
15
作者 王进 余薇 +1 位作者 孙开伟 邓欣 《江苏大学学报(自然科学版)》 CAS 北大核心 2021年第4期428-437,共10页
为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树... 为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树来挖掘数据样本之间的相关性,以树形结构保存数据的内在关联;通过引入随机子集训练每个标签的若干分类树来学习标签特定特征,增强特征对单个标签表达,提升分类性能.将所提出的方法在flag、emotions等11个数据集上与经典的特定特征领域多标签学习方法(LIFT、LLSF、REEL、LLSF-DL)进行对比试验.结果表明:新方法在各评估指标(Hamming Loss、One-error、Ranking Loss、Average Precision、Micro-averaged F-Measure)上均具有明显的性能提升,且方法具备简单灵活性. 展开更多
关键词 多标签学习 标签特定特征 特征构建 聚类特征树 聚类提升树
下载PDF
多标签高光谱图像地物分类 被引量:4
16
作者 张晶 王亦斌 方帅 《中国图象图形学报》 CSCD 北大核心 2020年第3期568-578,共11页
目的在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这... 目的在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这一问题,本文将多标签技术运用在高光谱分类中。方法基于高光谱特性,本文将欧氏距离与光谱角有机结合运用到基于类属属性的多标签学习LIFT(multi-label learning with label specific features)算法的类属属性构建中,形成了适合高光谱多标签的方法。基于标签地位的不相等,本文为多标签数据标注丰度最大标签,并在K最近邻KNN(k-nearest neighbor)算法中为丰度最大的标签设置比其余标签更大的权重,完成对最大丰度标签的分类。结果在多标签分类与单标签分类的比较中,多标签表现更优,且多标签在precision指标上表现良好,高于单标签0.5%~1.5%。在与其余4种多标签方法的比较中,本文多标签方法在2个数据集上表现最优,在剩余1个数据集上表现次优。在最大丰度标签的分类上,本文方法表现优于单标签分类,在数据集Jasper Ridge上的总体分类精度提高0.2%,混合像元分类精度提高0.5%。结论多标签分类技术应用在高光谱地物分类上是可行的,可以提升分类效果。本文方法根据高光谱数据的特性对LIFT方法进行了改造,在高光谱多标签分类上表现优异。高光谱地物的多标签分类中,每个像元多个标签的地位不同,在分类中可以通过设置不同权重体现该性质,提升分类精度。 展开更多
关键词 遥感 高光谱分类 多标签分类 基于类属属性的多标签学习LIFT 类属属性 光谱相似度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部