目的在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这...目的在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这一问题,本文将多标签技术运用在高光谱分类中。方法基于高光谱特性,本文将欧氏距离与光谱角有机结合运用到基于类属属性的多标签学习LIFT(multi-label learning with label specific features)算法的类属属性构建中,形成了适合高光谱多标签的方法。基于标签地位的不相等,本文为多标签数据标注丰度最大标签,并在K最近邻KNN(k-nearest neighbor)算法中为丰度最大的标签设置比其余标签更大的权重,完成对最大丰度标签的分类。结果在多标签分类与单标签分类的比较中,多标签表现更优,且多标签在precision指标上表现良好,高于单标签0.5%~1.5%。在与其余4种多标签方法的比较中,本文多标签方法在2个数据集上表现最优,在剩余1个数据集上表现次优。在最大丰度标签的分类上,本文方法表现优于单标签分类,在数据集Jasper Ridge上的总体分类精度提高0.2%,混合像元分类精度提高0.5%。结论多标签分类技术应用在高光谱地物分类上是可行的,可以提升分类效果。本文方法根据高光谱数据的特性对LIFT方法进行了改造,在高光谱多标签分类上表现优异。高光谱地物的多标签分类中,每个像元多个标签的地位不同,在分类中可以通过设置不同权重体现该性质,提升分类精度。展开更多
Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and...Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches.展开更多
为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树...为了探索多标签数据集中每个标签所具有的特定特征,针对标签特定特征进行有效的利用,提出基于聚类提升树的多标签学习方法(multi-label leaning based on boosting clustering trees,MLL-BCT).建立MLL-BCT整体框架,通过引入聚类特征树来挖掘数据样本之间的相关性,以树形结构保存数据的内在关联;通过引入随机子集训练每个标签的若干分类树来学习标签特定特征,增强特征对单个标签表达,提升分类性能.将所提出的方法在flag、emotions等11个数据集上与经典的特定特征领域多标签学习方法(LIFT、LLSF、REEL、LLSF-DL)进行对比试验.结果表明:新方法在各评估指标(Hamming Loss、One-error、Ranking Loss、Average Precision、Micro-averaged F-Measure)上均具有明显的性能提升,且方法具备简单灵活性.展开更多
为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算...为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算法G-GMLIFT(global-gravitation model based label specific features)和L-GMLIFT(local-gravitation model based label specific features)。结合引力模型,利用近邻集合的特征和标签信息,构成基于相互作用的类属属性空间,度量数据间的相互作用。仿真结果表明,与现有方法相比,所提算法具有较好的分类性能。展开更多
文摘目的在高光谱地物分类中,混合像元在两个方面给单标签分类带来了负面影响:单类地物在混入异类地物后,其光谱特征会发生改变,失去独特性,使类内差异变大;多类地物在混合比例加深的情况下,光谱曲线会互相趋近,使类间差异变小。为了解决这一问题,本文将多标签技术运用在高光谱分类中。方法基于高光谱特性,本文将欧氏距离与光谱角有机结合运用到基于类属属性的多标签学习LIFT(multi-label learning with label specific features)算法的类属属性构建中,形成了适合高光谱多标签的方法。基于标签地位的不相等,本文为多标签数据标注丰度最大标签,并在K最近邻KNN(k-nearest neighbor)算法中为丰度最大的标签设置比其余标签更大的权重,完成对最大丰度标签的分类。结果在多标签分类与单标签分类的比较中,多标签表现更优,且多标签在precision指标上表现良好,高于单标签0.5%~1.5%。在与其余4种多标签方法的比较中,本文多标签方法在2个数据集上表现最优,在剩余1个数据集上表现次优。在最大丰度标签的分类上,本文方法表现优于单标签分类,在数据集Jasper Ridge上的总体分类精度提高0.2%,混合像元分类精度提高0.5%。结论多标签分类技术应用在高光谱地物分类上是可行的,可以提升分类效果。本文方法根据高光谱数据的特性对LIFT方法进行了改造,在高光谱多标签分类上表现优异。高光谱地物的多标签分类中,每个像元多个标签的地位不同,在分类中可以通过设置不同权重体现该性质,提升分类精度。
基金Supported by the Opening Fund of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education (93K-17-2010-K02)the Opening Fund of Key Discipline of Computer Soft-Ware and Theory of Zhejiang Province at Zhejiang Normal University (ZSDZZZZXK05)
文摘Aiming at the problem of multi-label classification, a multi-label classification algorithm based on label-specific features is proposed in this paper. In this algorithm, we compute feature density on the positive and negative instances set of each class firstly and then select mk features of high density from the positive and negative instances set of each class, respectively; the intersec- tion is taken as the label-specific features of the corresponding class. Finally, multi-label data are classified on the basis of la- bel-specific features. The algorithm can show the label-specific features of each class. Experiments show that our proposed method, the MLSF algorithm, performs significantly better than the other state-of-the-art multi-label learning approaches.
文摘为解决基于类属属性的多标签分类算法(multi-label classification with label specific features,LIFT),在类属属性构造过程中未考虑数据间的相互作用且未利用近邻集合的特征和标签信息的问题,提出基于引力模型的类属属性多标签分类算法G-GMLIFT(global-gravitation model based label specific features)和L-GMLIFT(local-gravitation model based label specific features)。结合引力模型,利用近邻集合的特征和标签信息,构成基于相互作用的类属属性空间,度量数据间的相互作用。仿真结果表明,与现有方法相比,所提算法具有较好的分类性能。