期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
水污染问题特征有限差分方法的数值计算及理论分析 被引量:2
1
作者 王焕 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第3期53-60,共8页
研究水污染二维对流占优数学模型特征有限差分方法的计算问题 ,导出的计算格式对时间变量用特征线修正方法离散 ,对空间变量用带权二阶中心差分方法离散 .对Neumann型边界条件的离散 ,在线性特征差分格式中用一阶偏心差商离散 ,在二次... 研究水污染二维对流占优数学模型特征有限差分方法的计算问题 ,导出的计算格式对时间变量用特征线修正方法离散 ,对空间变量用带权二阶中心差分方法离散 .对Neumann型边界条件的离散 ,在线性特征差分格式中用一阶偏心差商离散 ,在二次特征差分格式中用一阶中心差商离散 ,在收敛性分析中用离散Green公式处理Neumann型边界条件的影响 ,最后分别得到线性特征差分格式和二次特征差分格式的离散l2 展开更多
关键词 特征有限差分法 Neumann型边界条件 双线性插值 双二次插值 l^2-模误差估计
下载PDF
热传导型半导体瞬态问题特征变网格有限元法及其分析
2
作者 杨青 《高校应用数学学报(A辑)》 CSCD 北大核心 2002年第3期353-362,共10页
热传导型半导体器件的瞬时状态由四个方程的非线性偏微分方程组的初边值问题所决定 .其中电子位势方程是椭圆型的 ,电子和空穴浓度方程是对流扩散型的 ,温度方程为热传导型的 .本文提出解这类问题的特征变网格有限元法 ,并进行了理论分... 热传导型半导体器件的瞬时状态由四个方程的非线性偏微分方程组的初边值问题所决定 .其中电子位势方程是椭圆型的 ,电子和空穴浓度方程是对流扩散型的 ,温度方程为热传导型的 .本文提出解这类问题的特征变网格有限元法 ,并进行了理论分析 ,在一定条件下 ,得到了某种意义下的最佳 L2误差估计结果 . 展开更多
关键词 瞬态问题 变网格 有限元法 热传导型半导体器件
下载PDF
THE L^2-NORM ERROR ESTIMATE OF NONCONFORMING FINITE ELEMENT METHOD FOR THE 2ND ORDER ELLIPTIC PROBLEM WITH THE LOWEST REGULARITY
3
作者 Lie-heng Wang (LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing, 100080, China) 《Journal of Computational Mathematics》 SCIE CSCD 2000年第3期277-282,共6页
Presents the abstract L...-norm error estimate of nonconforming finite element method. Use of the Aubin Nitsche Lemma in estimating nonconforming finite element methods; Details on the equations.
关键词 l-2-norm error estimate nonconforming f.e.m. lowest regularity
原文传递
p-型有限元方法的L^2模误差估计的一个补充
4
作者 江金生 程晓良 《高校应用数学学报(A辑)》 CSCD 北大核心 1991年第1期38-43,共6页
本文讨论Kenneth Erikssion提出的模型问题的p-型有限元方法,解决了文[1]定理2后提出的问题,并给出提高误差收敛阶的一个方法。
关键词 p-型有限元方法 l^2 误差估计
下载PDF
具有非凸条件的单个守恒律初边值问题的粘性逼近解的L^1模误差估计
5
作者 吴维 陈喜林 《漯河职业技术学院学报》 2012年第2期89-91,共3页
研究具有非凸条件的单个守恒律初边值问题的粘性逼近解的L1模误差估计.在流函数有一个拐点的条件下,就初始值为两段常数和边界值为常数的情形,根据弱熵解的几何结构,使用匹配行波解方法导出其粘性逼近解和无粘性解间的L1模误差界为O(ε1... 研究具有非凸条件的单个守恒律初边值问题的粘性逼近解的L1模误差估计.在流函数有一个拐点的条件下,就初始值为两段常数和边界值为常数的情形,根据弱熵解的几何结构,使用匹配行波解方法导出其粘性逼近解和无粘性解间的L1模误差界为O(ε1/2+ε|lnε|). 展开更多
关键词 具有非凸条件的单个守恒律 初边值问题 边界熵条件 粘性逼近解 l1模误差估计
下载PDF
CONVERGENCE ANALYSIS OF MIXED VOLUME ELEMENT-CHARACTERISTIC MIXED VOLUME ELEMENT FOR THREE-DIMENSIONAL CHEMICAL OIL-RECOVERY SEEPAGE COUPLED PROBLEM
6
作者 袁益让 程爱杰 +2 位作者 羊丹平 李长峰 杨青 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期519-545,共27页
The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The p... The physical model is described by a seepage coupled system for simulating numerically three-dimensional chemical oil recovery, whose mathematical description includes three equations to interpret main concepts. The pressure equation is a nonlinear parabolic equation, the concentration is defined by a convection-diffusion equation and the saturations of different components are stated by nonlinear convection-diffusion equations. The transport pressure appears in the concentration equation and saturation equations in the form of Darcy velocity, and controls their processes. The flow equation is solved by the conservative mixed volume element and the accuracy is improved one order for approximating Darcy velocity. The method of characteristic mixed volume element is applied to solve the concentration, where the diffusion is discretized by a mixed volume element method and the convection is treated by the method of characteristics. The characteristics can confirm strong computational stability at sharp fronts and it can avoid numerical dispersion and nonphysical oscillation. The scheme can adopt a large step while its numerical results have small time-truncation error and high order of accuracy. The mixed volume element method has the law of conservation on every element for the diffusion and it can obtain numerical solutions of the concentration and adjoint vectors. It is most important in numerical simulation to ensure the physical conservative nature. The saturation different components are obtained by the method of characteristic fractional step difference. The computational work is shortened greatly by decomposing a three-dimensional problem into three successive one-dimensional problems and it is completed easily by using the algorithm of speedup. Using the theory and technique of a priori estimates of differential equations, we derive an optimal second order estimates in 12 norm. Numerical examples are given to show the effectiveness and practicability and the method is testified as a powerful tool to solve t 展开更多
关键词 Chemical oil recovery mixed volume element-characteristic mixed volume element characteristic fractional step differences local conservation of mass second-order error estimate in l2-norm
下载PDF
ALTERNATING DIRECTIONFINITE ELEMENT METHOD FORSOME REACTION DIFFUSION MODELS
7
作者 江成顺 刘蕴贤 沈永明 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2004年第2期172-182,共11页
This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for... This paper is concerned with some nonlinear reaction - diffusion models. To solve this kind of models, the modified Laplace finite element scheme and the alternating direction finite element scheme are established for the system of patrical differential equations. Besides, the finite difference method is utilized for the ordinary differential equation in the models. Moreover, by the theory and technique of prior estimates for the differential equations, the convergence analyses and the optimal L2- norm error estimates are demonstrated. 展开更多
关键词 非线性反应扩散模型 laplace有限元方法 有限差分法 l^2-标准误差估计
下载PDF
水污染问题特征有限元方法的数值计算及理论分析 被引量:2
8
作者 王焕 《应用数学》 CSCD 北大核心 2003年第2期42-49,共8页
本文研究了水污染二维对流占优数学模型特征有限元方法的计算问题 ,导出的计算格式对时间变量用特征线方法离散 ,对空间变量用Galerkin有限元方法离散 ,得到的H1 模和L2
关键词 水污染 特征有限元方法 数值计算 H^1-模误差估计 l^2-模误差估计 离散Galerkin引理 特征线法 GAlERKIN有限元法
下载PDF
THE BEST L2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM 被引量:1
9
作者 Jun Hu Zhong-Ci Shi 《Journal of Computational Mathematics》 SCIE CSCD 2012年第5期449-460,共12页
In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second ... In the paper, we analyze the L2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C1 -P2 macro element, the nonconforming Morley element, the C1 -Q2 macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang- Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm? 展开更多
关键词 l2 norm error estimate Energy norm error estimate Conforming Noncon-forming The Kirchhoff plate.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部