研究了鲍鱼在不同热风干燥温度下的干燥动力学特点,并构建了干燥过程的数学模型。热风干燥温度选取60、65、70、75、80℃;风速恒定为1m/s。干燥方法采取间歇干燥,分两个阶段进行。利用理论模型—扩散模型,和常见经验模型—Newton模型、H...研究了鲍鱼在不同热风干燥温度下的干燥动力学特点,并构建了干燥过程的数学模型。热风干燥温度选取60、65、70、75、80℃;风速恒定为1m/s。干燥方法采取间歇干燥,分两个阶段进行。利用理论模型—扩散模型,和常见经验模型—Newton模型、Henderson and Pabis模型、Logaritmic模型、Two-terms模型、Page模型及Modified Page模型,对鲍鱼干燥过程的两个阶段分别进行描述。实验结果表明:鲍鱼热风干燥只经历降速阶段,水分扩散在鲍鱼干燥的过程中起主导作用。通过对实验数据进行统计分析,得到适合鲍鱼热风干燥的模型为Page模型(第一阶段干燥)和Two-terms模型(第二阶段干燥),模型的预测值与实际值比较吻合(Page模型r2>0.999,s<1%;Two-terms模型r2>0.997,s<2%),可以用来描述鲍鱼的热风干燥过程。展开更多
Lithium and cobalt recovery from spent lithium-ion batteries(LIBs) is a major focus because of their increased production and usage. The conventional method for recycling spent LIBs using inorganic acids produces harm...Lithium and cobalt recovery from spent lithium-ion batteries(LIBs) is a major focus because of their increased production and usage. The conventional method for recycling spent LIBs using inorganic acids produces harmful byproducts. In this work, the leaching agent was substituted with a less expensive and more environmentally friendly alternative—acetic acid—and a mathematical model was developed to describe the kinetics of the recovery process. The variables used were the pH value, temperature, H_2O_2 concentration, and the solid-to-liquid(S/L) ratio. The mathematical model used was the shrinking core model, which was modified to accommodate an equilibrium reaction. The experimental results show that the rate of recovery of Li and Co over time was only affected by temperature. The leaching behaviors of Li and Co were found to oppose each other. An increase in temperature resulted in increased recovery of Li but decreased recovery of Co because of the product-favoring endothermic reaction of Li and the reactant-favoring exothermic reaction of Co. The product of Li has a lower entropy value than the reactant as a free-moving ion, whereas the product of Co leaching has a higher entropy value as a stiff crystal complex. Thus, temperature conditioning is a pivotal factor in the leaching of spent LIBs.展开更多
During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe ef...During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.展开更多
以硫酸为催化剂,间歇实验研究了276.2-285.2 K温度范围内混合丁烯/异丁烷烷基化反应动力学。实验结果表明,随着反应温度的降低,主产物三甲基戊烷(TMPs)生成量和烷基化油整体辛烷值增大,副产物二甲基己烷(DMHs)变化较小,高碳组分(HE...以硫酸为催化剂,间歇实验研究了276.2-285.2 K温度范围内混合丁烯/异丁烷烷基化反应动力学。实验结果表明,随着反应温度的降低,主产物三甲基戊烷(TMPs)生成量和烷基化油整体辛烷值增大,副产物二甲基己烷(DMHs)变化较小,高碳组分(HEs)的生成量降低明显。采用基于碳正离子反应机理建立的烷基化动力学模型对TMPs、DMHs、HEs 3类组分进行了计算分析,模拟计算结果表明,动力学模型对实验数据的拟合效果良好。链引发步骤异丁烯加氢离子反应表现出反Arrhenius行为,其本身及逆反应的活化能分别为45.14 k J·mol^-1和41.44 k J·mol^-1,增加对链传递部分C8正碳离子形成步骤的速率常数计算,部分涉及链传递和链终止反应步骤反应速率常数与文献值保持一致。展开更多
文摘研究了鲍鱼在不同热风干燥温度下的干燥动力学特点,并构建了干燥过程的数学模型。热风干燥温度选取60、65、70、75、80℃;风速恒定为1m/s。干燥方法采取间歇干燥,分两个阶段进行。利用理论模型—扩散模型,和常见经验模型—Newton模型、Henderson and Pabis模型、Logaritmic模型、Two-terms模型、Page模型及Modified Page模型,对鲍鱼干燥过程的两个阶段分别进行描述。实验结果表明:鲍鱼热风干燥只经历降速阶段,水分扩散在鲍鱼干燥的过程中起主导作用。通过对实验数据进行统计分析,得到适合鲍鱼热风干燥的模型为Page模型(第一阶段干燥)和Two-terms模型(第二阶段干燥),模型的预测值与实际值比较吻合(Page模型r2>0.999,s<1%;Two-terms模型r2>0.997,s<2%),可以用来描述鲍鱼的热风干燥过程。
基金financially supported by Universitas Gadjah Mada partly through LPDP’s Molina Project fiscal year 2015 and partly by University Grant for Applied Research (PTUPT) 2018the support given by the Department of Earth Resource, Kyushu University for the research facilities provided during joint research in Sakura Science Project under Japan Science and Technology Agency
文摘Lithium and cobalt recovery from spent lithium-ion batteries(LIBs) is a major focus because of their increased production and usage. The conventional method for recycling spent LIBs using inorganic acids produces harmful byproducts. In this work, the leaching agent was substituted with a less expensive and more environmentally friendly alternative—acetic acid—and a mathematical model was developed to describe the kinetics of the recovery process. The variables used were the pH value, temperature, H_2O_2 concentration, and the solid-to-liquid(S/L) ratio. The mathematical model used was the shrinking core model, which was modified to accommodate an equilibrium reaction. The experimental results show that the rate of recovery of Li and Co over time was only affected by temperature. The leaching behaviors of Li and Co were found to oppose each other. An increase in temperature resulted in increased recovery of Li but decreased recovery of Co because of the product-favoring endothermic reaction of Li and the reactant-favoring exothermic reaction of Co. The product of Li has a lower entropy value than the reactant as a free-moving ion, whereas the product of Co leaching has a higher entropy value as a stiff crystal complex. Thus, temperature conditioning is a pivotal factor in the leaching of spent LIBs.
基金financially supported by the National Key R&D Program of China (Nos. 2017YFB0703001 and 2017YFB0305100)the National Natural Science Foundation of China (Nos. 51134011, 51431008, 51790483 and 51801157)+4 种基金the Fundamental Research Funds for the Central Universities (No. 3102017zy064)the Research Fund of the State Key Laboratory of Solidification Processing (Nos. 117-TZ-2015, 159-QP-2016)the Analytical & Testing Center of Northwestern Polytechnical University for Equipment Supportfinancial support from the Top International University Visiting Program for Outstanding Young Scholars of Northwestern Polytechnical Universitythe China Scholarship Council (CSC) Scholarship
文摘During the multi-stage processing of advanced high-strength steels, the austenite-to-ferrite transformation, generally as a precursor of the formation of other non-equilibrium or metastable structures, has a severe effect on the subsequent phase transformations. Herein, a more flexible kinetic and microstructural predictive modeling for the key austenite-to-ferrite transformation of Fe-C-Mn-Si steels was developed,in combination with the classical nucleation theory, the general mixed-mode growth model based on Gibbs energy balance, the microstructural path method and the kinetic framework for grain boundary nucleation. Adopting a bounded, extended matrix space corresponding to a single ferrite grain, both softimpingement and hard-impingement can be naturally included in the current modeling. Accordingly, this model outputs the ferrite volume fraction, the austenite/ferrite interface area per unit volume, and the average grain size of ferrite, which will serve as the input parameters for modeling the subsequent bainite or martensite transformations. Applying the model, this work successfully predicts the experiment measurement of the isothermal austenite-to-ferrite transformation in Fe-0.17 C-0.91 Mn-1.03 Si(wt%) steel at different temperatures and explains why the final-state average grain size of ferrite has a maximum at the moderate annealing temperature. Effectiveness and advantages of the present model are discussed arising from kinetics and thermodynamics accompanied with nucleation, growth and impingement.
文摘以硫酸为催化剂,间歇实验研究了276.2-285.2 K温度范围内混合丁烯/异丁烷烷基化反应动力学。实验结果表明,随着反应温度的降低,主产物三甲基戊烷(TMPs)生成量和烷基化油整体辛烷值增大,副产物二甲基己烷(DMHs)变化较小,高碳组分(HEs)的生成量降低明显。采用基于碳正离子反应机理建立的烷基化动力学模型对TMPs、DMHs、HEs 3类组分进行了计算分析,模拟计算结果表明,动力学模型对实验数据的拟合效果良好。链引发步骤异丁烯加氢离子反应表现出反Arrhenius行为,其本身及逆反应的活化能分别为45.14 k J·mol^-1和41.44 k J·mol^-1,增加对链传递部分C8正碳离子形成步骤的速率常数计算,部分涉及链传递和链终止反应步骤反应速率常数与文献值保持一致。