In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space whic...In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.展开更多
A moment method with closures based on Gaussian quadrature formulas is proposed to solve the Boltzmann kinetic equation with a hard-sphere collision kernel for mono-dispersed particles.Different orders of accuracy in ...A moment method with closures based on Gaussian quadrature formulas is proposed to solve the Boltzmann kinetic equation with a hard-sphere collision kernel for mono-dispersed particles.Different orders of accuracy in terms of the moments of the velocity distribution function are considered,accounting for moments up to seventh order.Quadrature-based closures for four different models for inelastic collisionthe Bhatnagar-Gross-Krook,ES-BGK,the Maxwell model for hard-sphere collisions,and the full Boltzmann hard-sphere collision integral-are derived and compared.The approach is validated studying a dilute non-isothermal granular flow of inelastic particles between two stationary Maxwellian walls.Results obtained from the kinetic models are compared with the predictions of molecular dynamics(MD)simulations of a nearly equivalent system with finite-size particles.The influence of the number of quadrature nodes used to approximate the velocity distribution function on the accuracy of the predictions is assessed.Results for constitutive quantities such as the stress tensor and the heat flux are provided,and show the capability of the quadrature-based approach to predict them in agreement with the MD simulations under dilute conditions.展开更多
In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.Fr...In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narr展开更多
The(La0.67Mg0.33)1-xTixNi2.75Co0.25(x = 0,0.05,0.10,0.15 and 0.20,at%) alloys were synthesized by arc melting and subsequent heat solid-liquid diffusing method.The structure,electrochemical properties and kinetic char...The(La0.67Mg0.33)1-xTixNi2.75Co0.25(x = 0,0.05,0.10,0.15 and 0.20,at%) alloys were synthesized by arc melting and subsequent heat solid-liquid diffusing method.The structure,electrochemical properties and kinetic characteristics of the alloys were investigated systematically.The results showed that all the alloys mainly consisted of the(La,Mg)Ni3,LaNi5 phases,and the lattice parameters and the cell volumes of the(La,Mg)Ni3 and LaNi5 phases decreased with increasing Ti content.The alloy electrodes could be activated to reach their maximum discharge capacity within five cycles.The cycle life after 100 charge/discharge cycles(C100/Cmax) and the high-rate dischargeability at a discharge current density of 1200 mA/g first increased and then decreased.All the results showed that low-Ti content in AB3-type hydrogen storage alloys was beneficial to improvements of the overall electrochemical properties,and the optimum overall electrochemical performance of the alloy electrodes was obtained when x = 0.05.展开更多
The flight of albatross (Diomedea exulans) takes advantage of the up-drift which is determined by the product of relative wind velocity and it’s gradient above the sea surface, to power its elegant (dynamic) flight o...The flight of albatross (Diomedea exulans) takes advantage of the up-drift which is determined by the product of relative wind velocity and it’s gradient above the sea surface, to power its elegant (dynamic) flight over the ocean. Some of the complicated flight manoeuvres are determined by biological necessities. From its most basic flight manoeuvre a technical aerodynamically scheme can be derived which allows the design of a mechanical technical prototype of a wind generator. It is based on a rotational movement in combination with a skillful time dependent adjustment of the airfoil. Several technical possibilities are discussed and with one of these elaborated in some detail. The technology to be developed could be applied in highly asymmetric air streaming environment around high rise buildings, on mountain ridges and of course, also low above sea level and plains. Mathematical-technical conditions for power gain are discussed. The technology could, in principle, also be deployed to exploit velocity gradients in river water environment. The engineering challenges are significant and the presented work is just a blueprint for tasks to be accomplished.展开更多
文摘In this paper the concepts of the boundary value problem of abstract kinetic equation with the first kind of critical parameter γ 0 and generalized periodic boundary conditions are introduced in a Lebesgue space which consists of functions with vector valued in a general Banach space, and then describe the solution of these abstract boundary value problem by the abstract linear integral operator of Volterra type. We call this process the integral operator solving process.
文摘A moment method with closures based on Gaussian quadrature formulas is proposed to solve the Boltzmann kinetic equation with a hard-sphere collision kernel for mono-dispersed particles.Different orders of accuracy in terms of the moments of the velocity distribution function are considered,accounting for moments up to seventh order.Quadrature-based closures for four different models for inelastic collisionthe Bhatnagar-Gross-Krook,ES-BGK,the Maxwell model for hard-sphere collisions,and the full Boltzmann hard-sphere collision integral-are derived and compared.The approach is validated studying a dilute non-isothermal granular flow of inelastic particles between two stationary Maxwellian walls.Results obtained from the kinetic models are compared with the predictions of molecular dynamics(MD)simulations of a nearly equivalent system with finite-size particles.The influence of the number of quadrature nodes used to approximate the velocity distribution function on the accuracy of the predictions is assessed.Results for constitutive quantities such as the stress tensor and the heat flux are provided,and show the capability of the quadrature-based approach to predict them in agreement with the MD simulations under dilute conditions.
基金supported by grants from the National Key Basic Research and Development Program(Grant 2006CB202307 and 2009CB219306)the Natural Science Foundation of China(40972101)the Major National Science and Technology Programs(2008ZX05007- 001,2008ZX05004-003)
文摘In order to contrast the hydrocarbon generation kinetic characteristics from different types of organic matter(OM),18 samples from different basins were pyrolyzed using Rock-Eval-Ⅱapparatus under the open system.From the experimental results,the curve of hydrocarbon generation rate vs.temperature can be easily obtained,which usually can be used to optimize kinetic parameters (A,E,F)of the hydrocarbon generation model.In this paper,the parallel first-order reaction with a single frequency factor model is selected to describe the hydrocarbon generation kinetic characteristics. The hydrocarbon generation kinetic parameters reveal that the types of compound structures and chemical bonds of the lacustrine fades typeⅠOM are relatively homogeneous,with one dominating activation energy.The types of chemical bonds of the lacustrine facies typeⅡ2 OM and the terrestrial facies typeⅢOM are relative complex,with a broad activation energy distribution,and the reaction fraction of the preponderant activation energy drops with the decrease of hydrogen index.The impact of the activation energy distribution spaces on the geological extrapolation of kinetic parameters is also investigated.The results show that it has little effect on the hydrocarbon transformation ratio(TR)and therefore,the parallel first-order reaction model with proper number of activation energies can be better used to describe the hydrocarbon generation process.The geological extrapolation results of 18 samples of kinetic parameters show that the distribution range of the hydrocarbon generation rate of the typeⅠOM is relatively narrow and the hydrocarbon generation curve is smooth.In comparison,the distribution range of the hydrocarbon generation for typeⅢand typeⅡ2-ⅢOM are quite wide,and the hydrocarbon generation curves have fluctuation phenomena.The distribution range of the hydrocarbon generation rate and the fluctuation phenomena are related to the kinetic parameters of OM;the narrower the activation energy distribution,the narr
文摘The(La0.67Mg0.33)1-xTixNi2.75Co0.25(x = 0,0.05,0.10,0.15 and 0.20,at%) alloys were synthesized by arc melting and subsequent heat solid-liquid diffusing method.The structure,electrochemical properties and kinetic characteristics of the alloys were investigated systematically.The results showed that all the alloys mainly consisted of the(La,Mg)Ni3,LaNi5 phases,and the lattice parameters and the cell volumes of the(La,Mg)Ni3 and LaNi5 phases decreased with increasing Ti content.The alloy electrodes could be activated to reach their maximum discharge capacity within five cycles.The cycle life after 100 charge/discharge cycles(C100/Cmax) and the high-rate dischargeability at a discharge current density of 1200 mA/g first increased and then decreased.All the results showed that low-Ti content in AB3-type hydrogen storage alloys was beneficial to improvements of the overall electrochemical properties,and the optimum overall electrochemical performance of the alloy electrodes was obtained when x = 0.05.
文摘The flight of albatross (Diomedea exulans) takes advantage of the up-drift which is determined by the product of relative wind velocity and it’s gradient above the sea surface, to power its elegant (dynamic) flight over the ocean. Some of the complicated flight manoeuvres are determined by biological necessities. From its most basic flight manoeuvre a technical aerodynamically scheme can be derived which allows the design of a mechanical technical prototype of a wind generator. It is based on a rotational movement in combination with a skillful time dependent adjustment of the airfoil. Several technical possibilities are discussed and with one of these elaborated in some detail. The technology to be developed could be applied in highly asymmetric air streaming environment around high rise buildings, on mountain ridges and of course, also low above sea level and plains. Mathematical-technical conditions for power gain are discussed. The technology could, in principle, also be deployed to exploit velocity gradients in river water environment. The engineering challenges are significant and the presented work is just a blueprint for tasks to be accomplished.