A new failure mechanism is proposed to analyze the roof collapse based on nonlinear failure criterion. Limit analysis approach and variational principle are used to obtain analytical findings concerning the stability ...A new failure mechanism is proposed to analyze the roof collapse based on nonlinear failure criterion. Limit analysis approach and variational principle are used to obtain analytical findings concerning the stability of potential roof. Then, parametric study is carried out to derive the change rule of corresponding parameters on the influence of collapsing shape, which is of paramount engineering significance to instruct the tunnel excavations. In comparison with existing results, the findings show agreement and validity of the proposed method. The actual collapse in certain shallow tunnels is well in accordance with the proposed failure mechanism.展开更多
A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non...A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non-variable.The lower layer modelling natural cohesive soil is subjected to spatial variability of undrained shear strength.The random failure mechanism method(RFMM)is used to evaluate the bearing capacity.This approach employs a kinematic assessment of the critical load and incorporates the averaging of three-dimensional(3 D)random field along dissipation surfaces that result from the failure mechanism geometry.A novel version of the approach considering an additional linear trend of undrained shear strength in the spatially variable layer is proposed.The high efficiency of the RFMM algorithm is preserved.The influences of foundation length,trend slope in the spatially variable layer,fluctuation scales,and thickness of the homogenous sand layer on the resulting bearing capacity evaluations are analysed.Moreover,for selected cases,verification of the RFMM based assessment obtained using random finite difference method(RFDM)based on 3 D analysis is provided.Two types of analyses are performed using RFDM based on associated and non-associated flow rules.For associated flow rule which corresponds to RFMM,the RFMM is conservative and efficient and thus it seems preferable.However,if RFDM employs non-associated flow rule(much lower dilation angle for sand layer),the efficient RFMM is no longer conservative.For this situation,a combined approach that improves the efficiency of the numerical method is suggested.展开更多
A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshif...A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshift Gamma-Ray Bursts (GRBs) data with a redshift range from 1.4 to 9. We obtain the stringent constraint on the values of current deceleration parameter q0, current jerk parameter j0, current equation of state for dark energy Woae and transition redshift zT. In addition, we compare the difference of the constraint results between the kinematical and the dynamical scenarios.展开更多
The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this pa...The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this paper, two optimization objective functions are proposed, aiming at either minimizing extra degrees of freedom (DOFs) or minimizing the total potential energy of a multilink redundant robot. Physical constraints of either equality or inequality types are taken into consideration in the objective functions. Since the closed-form solutions do not exist in general for highly nonlinear and constrained optimization problems, we adopt and develop two numerical methods, which are verified to be effective and precise in solving the two optimization problems associated with the redundant inverse kinematics. We first verify that the well established trajectory following method can precisely solve the two optimization problems, but is computation intensive. To reduce the computation time, a sequential approach that combines the sequential quadratic programming and iterative Newton-Raphson algorithm is developed. A 4-DOF Fujitsu Hoap-1 humanoid robot arm is used as a prototype to validate the effectiveness of the proposed optimization solutions.展开更多
This article deals with the use of an interdisciplinary approach to modelling and creation of a complex technical system of different physical nature in relation to the kinematics of cutting and shaping. The professor...This article deals with the use of an interdisciplinary approach to modelling and creation of a complex technical system of different physical nature in relation to the kinematics of cutting and shaping. The professor of the National Technical University of Ukraine, Kuznetcov Iu. N., proposed the approach based on generalization of knowledge, methodological basis of which is the theory of evolution of the systems and methods of genetic analysis and synthesis. For generalization of the knowledge in the fundamental sciences is based on the principles of a limited number of elementary generic structures with the introduction of the gene concept. The modelling and synthesis of kinematic cutting schemes are providing the efficiency and viability of genetic and morphological approach. The material point, which can interact with other ma-terial points in space and time, simulating anthropogenic system of different origin, is introduced as a material object.展开更多
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.T...A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.展开更多
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization ...This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.展开更多
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProjects(51178468,51378510)supported by the National Natural Science Foundation of China
文摘A new failure mechanism is proposed to analyze the roof collapse based on nonlinear failure criterion. Limit analysis approach and variational principle are used to obtain analytical findings concerning the stability of potential roof. Then, parametric study is carried out to derive the change rule of corresponding parameters on the influence of collapsing shape, which is of paramount engineering significance to instruct the tunnel excavations. In comparison with existing results, the findings show agreement and validity of the proposed method. The actual collapse in certain shallow tunnels is well in accordance with the proposed failure mechanism.
文摘A bearing capacity evaluation for the surface strip foundation on a working platform modelled on a twolayered substrate is considered in the study.The upper layer is assumed as man-made and wellcontrolled and thus non-variable.The lower layer modelling natural cohesive soil is subjected to spatial variability of undrained shear strength.The random failure mechanism method(RFMM)is used to evaluate the bearing capacity.This approach employs a kinematic assessment of the critical load and incorporates the averaging of three-dimensional(3 D)random field along dissipation surfaces that result from the failure mechanism geometry.A novel version of the approach considering an additional linear trend of undrained shear strength in the spatially variable layer is proposed.The high efficiency of the RFMM algorithm is preserved.The influences of foundation length,trend slope in the spatially variable layer,fluctuation scales,and thickness of the homogenous sand layer on the resulting bearing capacity evaluations are analysed.Moreover,for selected cases,verification of the RFMM based assessment obtained using random finite difference method(RFDM)based on 3 D analysis is provided.Two types of analyses are performed using RFDM based on associated and non-associated flow rules.For associated flow rule which corresponds to RFMM,the RFMM is conservative and efficient and thus it seems preferable.However,if RFDM employs non-associated flow rule(much lower dilation angle for sand layer),the efficient RFMM is no longer conservative.For this situation,a combined approach that improves the efficiency of the numerical method is suggested.
基金supported by the National Natural Science Foundation of China (Grant Nos.11147150,11175077 and 11005088)the Natural Science Foundation of Education Department of Liaoning Province (Grant No. L2011189)the Natural Science Foundation of Liaoning Province,China (Grant No.20102124)
文摘A kinematical model (a parameterized deceleration parameter) and a dynamical model (a parameterized equation of state for dark energy) are constrained from the current observational data including the high-redshift Gamma-Ray Bursts (GRBs) data with a redshift range from 1.4 to 9. We obtain the stringent constraint on the values of current deceleration parameter q0, current jerk parameter j0, current equation of state for dark energy Woae and transition redshift zT. In addition, we compare the difference of the constraint results between the kinematical and the dynamical scenarios.
文摘The kinematic redundancy in a robot leads to an infinite number of solutions for inverse kinematics, which implies the possibility to select a 'best' solution according to an optimization criterion. In this paper, two optimization objective functions are proposed, aiming at either minimizing extra degrees of freedom (DOFs) or minimizing the total potential energy of a multilink redundant robot. Physical constraints of either equality or inequality types are taken into consideration in the objective functions. Since the closed-form solutions do not exist in general for highly nonlinear and constrained optimization problems, we adopt and develop two numerical methods, which are verified to be effective and precise in solving the two optimization problems associated with the redundant inverse kinematics. We first verify that the well established trajectory following method can precisely solve the two optimization problems, but is computation intensive. To reduce the computation time, a sequential approach that combines the sequential quadratic programming and iterative Newton-Raphson algorithm is developed. A 4-DOF Fujitsu Hoap-1 humanoid robot arm is used as a prototype to validate the effectiveness of the proposed optimization solutions.
文摘This article deals with the use of an interdisciplinary approach to modelling and creation of a complex technical system of different physical nature in relation to the kinematics of cutting and shaping. The professor of the National Technical University of Ukraine, Kuznetcov Iu. N., proposed the approach based on generalization of knowledge, methodological basis of which is the theory of evolution of the systems and methods of genetic analysis and synthesis. For generalization of the knowledge in the fundamental sciences is based on the principles of a limited number of elementary generic structures with the introduction of the gene concept. The modelling and synthesis of kinematic cutting schemes are providing the efficiency and viability of genetic and morphological approach. The material point, which can interact with other ma-terial points in space and time, simulating anthropogenic system of different origin, is introduced as a material object.
基金the Islamic Azad University (IAU),South Tehran Branch,Tehran,Iran in support of the present research
文摘A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
基金financial support for the first author’s PhD program by the President’s Graduate Fellowship in Singapore
文摘This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule.Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatialetemporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudodynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial etemporal effect of earthquake input.