针对由于遮挡等原因造成卫星信号中断后精密单点定位(precise point positioning,PPP)需要重新收敛的问题,提出了一种基于多接收机模糊度关联的动态PPP快速重新收敛方法。以远海地区精密定位为背景,充分利用了远海地区实践应用中经常在...针对由于遮挡等原因造成卫星信号中断后精密单点定位(precise point positioning,PPP)需要重新收敛的问题,提出了一种基于多接收机模糊度关联的动态PPP快速重新收敛方法。以远海地区精密定位为背景,充分利用了远海地区实践应用中经常在测量船的不同位置上架设多台接收机的基本特点,建立不同接收机的模糊度之间的关系,获取发生数据中断的接收机的先验模糊度,进而完成动态PPP的快速重新收敛。实验结果表明,附加基线长度约束的两个接收机单历元固定双差模糊度的成功率在99%以上;在单历元固定双差模糊度的情况下,无论数据中断多长时间,所提算法都可以单历元完成动态PPP的重新收敛,并且收敛后的定位精度同数据中断前的定位精度相同。展开更多
收敛速度慢一直是限制精密单点定位(precise point positioning,PPP)发展的重要因素。研究表明,通过高精度电离层延迟改正,进而实现精密单点定位实时动态(PPP-real time kinematic,PPP-RTK),可显著提升PPP的收敛速度。目前区域PPP-RTK...收敛速度慢一直是限制精密单点定位(precise point positioning,PPP)发展的重要因素。研究表明,通过高精度电离层延迟改正,进而实现精密单点定位实时动态(PPP-real time kinematic,PPP-RTK),可显著提升PPP的收敛速度。目前区域PPP-RTK中电离层主要采用单星多项式电离层模型(satellite-based ionospheric model with polynomial function,SIM_POLY)与单星电离层延迟反距离内插模型(satellite-based ionospheric model with inverse distance weight function,SIM_IDW)进行建模。为了检验上述两种模型在不同纬度的建模精度,对中国广东、湖北及河北3个省上空电离层延迟进行建模,并将其应用于单/双系统、浮点解及固定解中,分析其定位性能。实验结果表明,在低纬度区域,SIM_IDW模型表现略优于SIM_POLY模型,中高纬度区域则并无显著差异。浮点解PPP中,将SIM_IDW模型及SIM_POLY模型改正下的结果与无电离层组合PPP(ionosphere-free combination PPP,IFPPP)及欧洲定轨中心(Centre for Orbit Determination in Europe,CODE)的全球电离层格网(global ionospheric map,GIM)改正下的非差非组合结果进行比较,发现区域电离层模型改正下的PPP定位效果更好;与湖北省及广东省定位结果相比,河北省数据收敛速度最快,单GPS解算模式下采用SIM_IDW及SIM_POLY模型改正下的定位精度相较于IFPPP分别提升了43.7%和43.0%。固定解PPP中,河北省GPS+北斗解算模式下SIM_IDW、SIM_POLY模型改正下的PPP-RTK首个历元模糊度固定成功率分别可达86.09%和89.13%,且水平方向定位精度首个历元收敛至5 cm,高程方向定位精度1.5 min内收敛至10 cm;定位精度方面,在引入北斗系统之后,双系统PPP-RTK相较于单GPS有明显提升,河北省GPS+北斗解算模式下SIM_IDW、SIM_POLY模型改正下的PPP-RTK水平及三维定位精度分别为1.3 cm和3.5 cm。通过SIM_IDW及SIM_POLY模型建立区域电离层模型进而实现PPP-RTK,可以显著缩短PPP收敛时间,提高定�展开更多
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti...With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.展开更多
文摘针对由于遮挡等原因造成卫星信号中断后精密单点定位(precise point positioning,PPP)需要重新收敛的问题,提出了一种基于多接收机模糊度关联的动态PPP快速重新收敛方法。以远海地区精密定位为背景,充分利用了远海地区实践应用中经常在测量船的不同位置上架设多台接收机的基本特点,建立不同接收机的模糊度之间的关系,获取发生数据中断的接收机的先验模糊度,进而完成动态PPP的快速重新收敛。实验结果表明,附加基线长度约束的两个接收机单历元固定双差模糊度的成功率在99%以上;在单历元固定双差模糊度的情况下,无论数据中断多长时间,所提算法都可以单历元完成动态PPP的重新收敛,并且收敛后的定位精度同数据中断前的定位精度相同。
文摘收敛速度慢一直是限制精密单点定位(precise point positioning,PPP)发展的重要因素。研究表明,通过高精度电离层延迟改正,进而实现精密单点定位实时动态(PPP-real time kinematic,PPP-RTK),可显著提升PPP的收敛速度。目前区域PPP-RTK中电离层主要采用单星多项式电离层模型(satellite-based ionospheric model with polynomial function,SIM_POLY)与单星电离层延迟反距离内插模型(satellite-based ionospheric model with inverse distance weight function,SIM_IDW)进行建模。为了检验上述两种模型在不同纬度的建模精度,对中国广东、湖北及河北3个省上空电离层延迟进行建模,并将其应用于单/双系统、浮点解及固定解中,分析其定位性能。实验结果表明,在低纬度区域,SIM_IDW模型表现略优于SIM_POLY模型,中高纬度区域则并无显著差异。浮点解PPP中,将SIM_IDW模型及SIM_POLY模型改正下的结果与无电离层组合PPP(ionosphere-free combination PPP,IFPPP)及欧洲定轨中心(Centre for Orbit Determination in Europe,CODE)的全球电离层格网(global ionospheric map,GIM)改正下的非差非组合结果进行比较,发现区域电离层模型改正下的PPP定位效果更好;与湖北省及广东省定位结果相比,河北省数据收敛速度最快,单GPS解算模式下采用SIM_IDW及SIM_POLY模型改正下的定位精度相较于IFPPP分别提升了43.7%和43.0%。固定解PPP中,河北省GPS+北斗解算模式下SIM_IDW、SIM_POLY模型改正下的PPP-RTK首个历元模糊度固定成功率分别可达86.09%和89.13%,且水平方向定位精度首个历元收敛至5 cm,高程方向定位精度1.5 min内收敛至10 cm;定位精度方面,在引入北斗系统之后,双系统PPP-RTK相较于单GPS有明显提升,河北省GPS+北斗解算模式下SIM_IDW、SIM_POLY模型改正下的PPP-RTK水平及三维定位精度分别为1.3 cm和3.5 cm。通过SIM_IDW及SIM_POLY模型建立区域电离层模型进而实现PPP-RTK,可以显著缩短PPP收敛时间,提高定�
基金National Natural Science Foundation of China(No.42022025)。
文摘With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.