Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real proc...Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.展开更多
A new method called RS-MSVM (Rough Set and Multi-class Support Vector Machine) is proposed for network intrusion detection. This method is based on rough set followed by MSVM for attribute reduction and classificati...A new method called RS-MSVM (Rough Set and Multi-class Support Vector Machine) is proposed for network intrusion detection. This method is based on rough set followed by MSVM for attribute reduction and classification respectively, The number of attributes of the network data used in this paper is reduced from 41 to 30 using rough set theory. The kernel function of HVDM-RBF (Heterogeneous Value Difference Metric Radial Basis Function), based on the heterogeneous value difference metric of heterogeneous datasets, is constructed for the heterogeneous network data. HVDM-RBF and one-against-one method are applied to build MSVM. DARPA (Defense Advanced Research Projects Agency) intrusion detection evaluating data were used in the experiment. The testing results show that our method outperforms other methods mentioned in this paper on six aspects: detection accuracy, number of support vectors, false positive rate, falsc negative rate, training time and testing time.展开更多
基金supported by Key Discipline Construction Program of Beijing Municipal Commission of Education (XK10008043)
文摘Most real application processes belong to a complex nonlinear system with incomplete information. It is difficult to estimate a model by assuming that the data set is governed by a global model. Moreover, in real processes, the available data set is usually obtained with missing values. To overcome the shortcomings of global modeling and missing data values, a new modeling method is proposed. Firstly, an incomplete data set with missing values is partitioned into several clusters by a K-means with soft constraints (KSC) algorithm, which incorporates soft constraints to enable clustering with missing values. Then a local model based on each group is developed by using SVR algorithm, which adopts a missing value insensitive (MVI) kernel to investigate the missing value estimation problem. For each local model, its valid area is gotten as well. Simulation results prove the effectiveness of the current local model and the estimation algorithm.
基金Supported by the 863 High Tech. Project (2001AA140213) and the State Key Basic Research Pro-ject (2001CB309403).
文摘A new method called RS-MSVM (Rough Set and Multi-class Support Vector Machine) is proposed for network intrusion detection. This method is based on rough set followed by MSVM for attribute reduction and classification respectively, The number of attributes of the network data used in this paper is reduced from 41 to 30 using rough set theory. The kernel function of HVDM-RBF (Heterogeneous Value Difference Metric Radial Basis Function), based on the heterogeneous value difference metric of heterogeneous datasets, is constructed for the heterogeneous network data. HVDM-RBF and one-against-one method are applied to build MSVM. DARPA (Defense Advanced Research Projects Agency) intrusion detection evaluating data were used in the experiment. The testing results show that our method outperforms other methods mentioned in this paper on six aspects: detection accuracy, number of support vectors, false positive rate, falsc negative rate, training time and testing time.