期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
均衡策略粒子群算法在图像分割中的应用 被引量:12
1
作者 夏星宇 高浩 王创业 《郑州大学学报(工学版)》 CAS 北大核心 2018年第1期59-66,共8页
针对图像阈值分割方法由于其穷举的性质使分割时间随着阈值数目的增加而无法满足图像处理要求的问题,提出一种基于均衡策略的粒子群进化算法来缩短分割的时间.改进的算法在粒子运行过程中引入均衡因子以增强个体获得较大搜索能力的可能... 针对图像阈值分割方法由于其穷举的性质使分割时间随着阈值数目的增加而无法满足图像处理要求的问题,提出一种基于均衡策略的粒子群进化算法来缩短分割的时间.改进的算法在粒子运行过程中引入均衡因子以增强个体获得较大搜索能力的可能性,确保它能进行有效的全局搜索;此外,为了增强算法的局部搜索能力,在群体进化方向中引入一个扰动因子,从而使得个体能够在该方向上获得更多的局部搜索机会.基于熵准则的Kapur用来作为验证提出的算法优劣.标准测试函数和标准图像实验结果表明,提出的算法相比于其它比较算法而言,在寻优能力和收敛速度上获得了更好的成绩. 展开更多
关键词 多阈值 粒子群进化算法 搜索能力 最大熵法
下载PDF
回溯搜索优化算法辅助的多阈值图像分割 被引量:7
2
作者 尹雨山 王李进 +3 位作者 尹义龙 王冰清 赵文婷 徐云龙 《智能系统学报》 CSCD 北大核心 2015年第1期68-74,共7页
阈值法是一种简单且有效的图像分割技术。然而阈值求解的计算量随阈值的增加而呈指数级别增长,这给多阈值图像分割带来巨大挑战。为了克服计算量过大问题,视多阈值分割模型为优化问题,分别将Otsu法和Kapur法作为目标函数,采用回溯搜索... 阈值法是一种简单且有效的图像分割技术。然而阈值求解的计算量随阈值的增加而呈指数级别增长,这给多阈值图像分割带来巨大挑战。为了克服计算量过大问题,视多阈值分割模型为优化问题,分别将Otsu法和Kapur法作为目标函数,采用回溯搜索优化算法求解目标函数,实现多阈值图像分割。将提出的多阈值分割算法应用于自然图像分割,并与其他算法比较,实验结果说明基于回溯搜索优化算法的多阈值图像分割技术是可行的,而且具有较好的分割效果。 展开更多
关键词 阈值法 回溯搜索优化算法 图像分割 OTSU kapur PSNR
下载PDF
A Context Sensitive Multilevel Thresholding Using Swarm Based Algorithms 被引量:6
3
作者 Shreya Pare Anil Kumar +1 位作者 Varun Bajaj Girish Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1471-1486,共16页
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding.... In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images. 展开更多
关键词 COLOR image segmentation kapur's ENTROPY MULTILEVEL THRESHOLDING OTSU method SWARM based optimization algorithms Tsalli's ENTROPY
下载PDF
An Efficient Multilevel Threshold Image Segmentation Method for COVID-19 Imaging Using Q-Learning Based Golden Jackal Optimization
4
作者 Zihao Wang Yuanbin Mo Mingyue Cui 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2276-2316,共41页
From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Consi... From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Considering the severely infectious nature of COVID-19,the diagnosis of COVID-19 has become crucial.Identification through the use of Computed Tomography(CT)images is an efficient and quick means.Therefore,scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images.In this paper,we propose a reinforcement learning-based golden jackal optimization algorithm,which is named QLGJO,to segment CT images in furtherance of the diagnosis of COVID-19.Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem.This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum.In addition,one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population.Two experiments were carried out to test the performance of the proposed algorithm.First,compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions.Secondly,QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics.It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics.Furthermore,the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO. 展开更多
关键词 COVID-19 Bionic algorithm Golden jackal optimization Image segmentation Otsu and kapur method
原文传递
结合混沌鸟群算法的阴极铜板表面缺陷检测 被引量:4
5
作者 王卓 张长胜 +4 位作者 李伟 钱俊兵 唐都作 蔡兵 常以涛 《中国图象图形学报》 CSCD 北大核心 2020年第4期697-707,共11页
目的铜电解过程中常因电解液溶解气体过饱阻止铜离子析出而在铜板表面形成凸起,常由操作员目视对铜板表面质量进行鉴别以决定归类,针对人工判别电解阴极铜板表面质量准确度和效率都较低的问题,提出一种结合混沌鸟群算法的铜板表面凸起... 目的铜电解过程中常因电解液溶解气体过饱阻止铜离子析出而在铜板表面形成凸起,常由操作员目视对铜板表面质量进行鉴别以决定归类,针对人工判别电解阴极铜板表面质量准确度和效率都较低的问题,提出一种结合混沌鸟群算法的铜板表面凸起智能识别方法。方法为增强算法的全局搜索能力,引入鸟群算法;选取鸟群劣质个体交替进行混和动态步长位置更新增加种群多样性以免陷入局部最优;对铜板表面缺陷进行分析,提出基点生长法并结合形态学开操作消除铜板图像纹理以提高算法对凸起面积计算的准确性。将最佳熵阈值确定法(Kapur-Sahoo-Wong,KSW)作为鸟群算法的适应度函数对铜板图像进行阈值分割,通过统计分割图像凸起像素点个数,得到实际凸起面积占比以决定铜板是否合格。结果将本文算法与遗传算法(genetic algorithm,GA)、鸡群算法(chicken swarm optimization,CSO)、萤火虫算法(glowworm swarm optimization,GSO)及鸟群算法(bird swarm algorithm,BSA)4种算法分别在时间、适应度值和结构相似度(structural similarity index measurement,SSIM)3个指标下分析对比,实验结果表明,本文算法适应度值可提高0.003 0.701,SSIM值可提高0.075 0.169。结论本文方法能有效检测铜板表面凸起面积占比并对其进行合格品、次品分类。 展开更多
关键词 铜板缺陷 阈值分割 鸟群算法 混沌理论 基点生长法 KSW熵法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部