In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Consi...From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Considering the severely infectious nature of COVID-19,the diagnosis of COVID-19 has become crucial.Identification through the use of Computed Tomography(CT)images is an efficient and quick means.Therefore,scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images.In this paper,we propose a reinforcement learning-based golden jackal optimization algorithm,which is named QLGJO,to segment CT images in furtherance of the diagnosis of COVID-19.Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem.This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum.In addition,one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population.Two experiments were carried out to test the performance of the proposed algorithm.First,compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions.Secondly,QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics.It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics.Furthermore,the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO.展开更多
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
基金supported by the National Natural Science Foundation of China[grant numbers 21466008]the Guangxi Natural Science Foundation,China[grant numbers 2019GXNSFAA185017]+1 种基金the Scientific Research Project of Guangxi Minzu University[grant numbers 2021MDKJ004]the Innovation Project of Guangxi Graduate Education[grant numbers YCSW2022255].
文摘From the end of 2019 until now,the Coronavirus Disease 2019(COVID-19)has been rampaging around the world,posing a great threat to people's lives and health,as well as a serious impact on economic development.Considering the severely infectious nature of COVID-19,the diagnosis of COVID-19 has become crucial.Identification through the use of Computed Tomography(CT)images is an efficient and quick means.Therefore,scientific researchers have proposed numerous segmentation methods to improve the diagnosis of CT images.In this paper,we propose a reinforcement learning-based golden jackal optimization algorithm,which is named QLGJO,to segment CT images in furtherance of the diagnosis of COVID-19.Reinforcement learning is combined for the first time with meta-heuristics in segmentation problem.This strategy can effectively overcome the disadvantage that the original algorithm tends to fall into local optimum.In addition,one hybrid model and three different mutation strategies were applied to the update part of the algorithm in order to enrich the diversity of the population.Two experiments were carried out to test the performance of the proposed algorithm.First,compare QLGJO with other advanced meta-heuristics using the IEEE CEC2022 benchmark functions.Secondly,QLGJO was experimentally evaluated on CT images of COVID-19 using the Otsu method and compared with several well-known meta-heuristics.It is shown that QLGJO is very competitive in benchmark function and image segmentation experiments compared with other advanced meta-heuristics.Furthermore,the source code of the QLGJO is publicly available at https://github.com/Vang-z/QLGJO.