类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本...类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本训练集的临界点(critical point,CP)的概念并对其性质进行了探讨,给出了求CP,CP的下近似值LA、上近似值UA的算法.之后,根据LA或UA及训练样本数对传统的kNN决策函数进行修改,这就是自适应的加权kNN文本分类.为了验证自适应的加权kNN文本分类的有效性,设计了2组实验进行对比:一组为不同的收缩因子间进行对比,可看做是与Tan的工作进行对比,同时用来证实在LA或UA上分类器的宏F1较好;另一组则是与随机重取样进行实验对比,其中,传统kNN方法作为对比的基线.实验表明,所提的自适应加权kNN文本分类优于随机重取样,使得宏F1指标明显上升.该方法有点类似于代价相关学习.展开更多
针对合成孔径雷达(SAR)目标的识别问题,提出了一种基于K近邻方法(KNN)的SAR图像目标识别方法。首先,有别于传统的图像特征提取方法,采用逆向思维,通过剪裁和去噪方法对图像的冗余信息进行"剔除",从而尽可能保留图像的原有信息...针对合成孔径雷达(SAR)目标的识别问题,提出了一种基于K近邻方法(KNN)的SAR图像目标识别方法。首先,有别于传统的图像特征提取方法,采用逆向思维,通过剪裁和去噪方法对图像的冗余信息进行"剔除",从而尽可能保留图像的原有信息,并将其作为待分类特征。然后分别用KNN和支持向量机(SVM)在MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集上进行了仿真对比实验。实验结果表明,此方法下KNN的分类效果明显优于SVM,其精度均达到94%以上,证明了所提方法的有效性。展开更多
文摘类偏斜问题(class i mbalance problem)是数据挖掘领域的常见问题之一,人们提出了各种策略来处理这个问题.当训练样本存在类偏斜问题时,kNN分类器会将小类中的样本错分到大类,导致分类的宏F1指标下降.针对kNN存在的这个缺陷,提出了文本训练集的临界点(critical point,CP)的概念并对其性质进行了探讨,给出了求CP,CP的下近似值LA、上近似值UA的算法.之后,根据LA或UA及训练样本数对传统的kNN决策函数进行修改,这就是自适应的加权kNN文本分类.为了验证自适应的加权kNN文本分类的有效性,设计了2组实验进行对比:一组为不同的收缩因子间进行对比,可看做是与Tan的工作进行对比,同时用来证实在LA或UA上分类器的宏F1较好;另一组则是与随机重取样进行实验对比,其中,传统kNN方法作为对比的基线.实验表明,所提的自适应加权kNN文本分类优于随机重取样,使得宏F1指标明显上升.该方法有点类似于代价相关学习.
文摘针对合成孔径雷达(SAR)目标的识别问题,提出了一种基于K近邻方法(KNN)的SAR图像目标识别方法。首先,有别于传统的图像特征提取方法,采用逆向思维,通过剪裁和去噪方法对图像的冗余信息进行"剔除",从而尽可能保留图像的原有信息,并将其作为待分类特征。然后分别用KNN和支持向量机(SVM)在MSTAR(Moving and Stationary Target Acquisition and Recognition)数据集上进行了仿真对比实验。实验结果表明,此方法下KNN的分类效果明显优于SVM,其精度均达到94%以上,证明了所提方法的有效性。