This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain...This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain control coefficients, the problem has remained unsolved and its major difficulty stems from the inapplicability of the commonly used high-gain like observer. By introducing an appropriate state transformation and a thoroughly novel observer based on high-gain K-filters, the backstepping design approach is successfully proposed to the output-feedback controller for this class of systems. It is shown that the global asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the control parameters.展开更多
The (n,f, k): F(G) system consists ofn components and the system fails (works) if and only if there are at least flailed (working) components or at least k consecutive failed (working) components. These sys...The (n,f, k): F(G) system consists ofn components and the system fails (works) if and only if there are at least flailed (working) components or at least k consecutive failed (working) components. These system models can be used in electronic equipment, automatic payment systems in banks, and furnace systems. In this paper we introduce and study the (n, f, k):F and (n, f, k): G systems consisting of weighted components. Recursive equations are presented for reliability evaluation of these new models. We also provide some conditions on the weights to represent weighted-(n,f, k) systems as usual (n,f, k) systems.展开更多
During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queue...During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queues to receive medical services leads to more casualties.The rise of patients increases their waste,which is another source of disease outbreak.In this study,a mathematical model is developed to control patients’congestion in a medical center and manage their waste,considering environmental issues.Besides a queueing system controlling the patients’congestion in the treatment center,another queue is considered for vehicles.An inventory model is employed to prevent waste accumulation.The developed model is solved and reaches an exact solution in small size,and obtains an acceptable solution in large size using the Grasshopper algorithm.A case study is considered to demonstrate the model’s applicability.Also,Sensitivity analysis and valuable managerial insights are presented.展开更多
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unkn...In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.展开更多
In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a s...In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a system of coupled eigenvalue PDEs that is usually supplemented by interface boundary conditions that can be derived from a variational formulation of the problem.We analyze such a system for the envelope functions and show that a failure to restrict their Fourier expansion coeffi-cients to small k components would lead to the appearance of non-physical solutions.We survey the existing methodologies to eliminate this difficulty and propose a simple and effective solution.This solution is demonstrated on an example of a two-band model for both bulk materials and low-dimensional nanostructures.Finally,based on the above requirement of small k,we derive a model for nanostructures with cylindrical symmetry and apply the developed model to the analysis of quantum dots using an eight-band model.展开更多
基金the National Natural Science Foundation of China (Grant No.60674036)the Science and Technique Development Plan of Shandong Province (Grant No.2004GG4204014)+2 种基金the Program for New Century Excellent Talents in University of China (Grant No.NCET-07-0513)the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (Grant No.2007BS01010)the Key Science and Technique Foundation of Ministry of Education (Grant No.108079)
文摘This paper considers the problem of global stabilization by output feedback for a class of nonlinear systems with uncertain control coefficients and with unmeasured states dependent growth. Mainly due to the uncertain control coefficients, the problem has remained unsolved and its major difficulty stems from the inapplicability of the commonly used high-gain like observer. By introducing an appropriate state transformation and a thoroughly novel observer based on high-gain K-filters, the backstepping design approach is successfully proposed to the output-feedback controller for this class of systems. It is shown that the global asymptotic stability of the closed-loop system can be guaranteed by the appropriate choice of the control parameters.
文摘The (n,f, k): F(G) system consists ofn components and the system fails (works) if and only if there are at least flailed (working) components or at least k consecutive failed (working) components. These system models can be used in electronic equipment, automatic payment systems in banks, and furnace systems. In this paper we introduce and study the (n, f, k):F and (n, f, k): G systems consisting of weighted components. Recursive equations are presented for reliability evaluation of these new models. We also provide some conditions on the weights to represent weighted-(n,f, k) systems as usual (n,f, k) systems.
文摘During epidemics,controlling the patients’congestion is a way to reduce disease spreading.Raising medical demands converts hospitals into one of the sources of disease outbreaks.The long patient waiting time in queues to receive medical services leads to more casualties.The rise of patients increases their waste,which is another source of disease outbreak.In this study,a mathematical model is developed to control patients’congestion in a medical center and manage their waste,considering environmental issues.Besides a queueing system controlling the patients’congestion in the treatment center,another queue is considered for vehicles.An inventory model is employed to prevent waste accumulation.The developed model is solved and reaches an exact solution in small size,and obtains an acceptable solution in large size using the Grasshopper algorithm.A case study is considered to demonstrate the model’s applicability.Also,Sensitivity analysis and valuable managerial insights are presented.
基金supported by National Natural Science Foundation of China (No. 61074014)the Outstanding Youth Funds of Liaoning Province (No. 2005219001)Educational Department of Liaoning Province (No. 2006R29, No. 2007T80)
文摘In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and singleoutput (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.
文摘In this paper we analyze a long standing problem of the appearance of spurious,non-physical solutions arising in the application of the effective mass theory to low dimensional nanostructures.The theory results in a system of coupled eigenvalue PDEs that is usually supplemented by interface boundary conditions that can be derived from a variational formulation of the problem.We analyze such a system for the envelope functions and show that a failure to restrict their Fourier expansion coeffi-cients to small k components would lead to the appearance of non-physical solutions.We survey the existing methodologies to eliminate this difficulty and propose a simple and effective solution.This solution is demonstrated on an example of a two-band model for both bulk materials and low-dimensional nanostructures.Finally,based on the above requirement of small k,we derive a model for nanostructures with cylindrical symmetry and apply the developed model to the analysis of quantum dots using an eight-band model.