期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
基于K近邻算法和支持向量回归组合的短时交通流预测 被引量:48
1
作者 刘钊 杜威 +2 位作者 闫冬梅 柴干 郭建华 《公路交通科技》 CAS CSCD 北大核心 2017年第5期122-128,158,共8页
为了提高短时交通流的预测精度,向交通管理部门和出行者提供更加准确可靠的交通信息,基于非参数回归与支持向量回归方法的特点,提出了一种混合预测模型(KNN-SVR)。该模型利用K近邻方法的搜索机制,重建与当前交通状态近似的历史交通流时... 为了提高短时交通流的预测精度,向交通管理部门和出行者提供更加准确可靠的交通信息,基于非参数回归与支持向量回归方法的特点,提出了一种混合预测模型(KNN-SVR)。该模型利用K近邻方法的搜索机制,重建与当前交通状态近似的历史交通流时间序列,然后利用支持向量回归原理实现短时交通流预测。针对实际的交通流数据,考虑预测路段上下游交通流的影响,对提出的KNN-SVR模型的预测精度进行了分析。研究结果表明:同时考虑预测路段和其邻近路段交通流影响的KNN-SVR模型具有更好的预测精度,其预测误差最小,平均为8.29%,而仅仅考虑预测路段交通流影响的KNN-SVR模型,其预测误差略高,平均为9.16%;KNN-SVR模型的预测精度优于传统单一的预测方法,如K-近邻非参数回归、支持向量回归以及神经网络方法。 展开更多
关键词 交通工程 预测模型 k近邻算法 支持向量回归 短时交通流
原文传递
改进型加权KNN算法的不平衡数据集分类 被引量:26
2
作者 王超学 潘正茂 +2 位作者 马春森 董丽丽 张涛 《计算机工程》 CAS CSCD 2012年第20期160-163,168,共5页
K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚... K最邻近(KNN)算法对不平衡数据集进行分类时分类判决总会倾向于多数类。为此,提出一种加权KNN算法GAK-KNN。定义新的权重分配模型,综合考虑类间分布不平衡及类内分布不均匀的不良影响,采用基于遗传算法的K-means算法对训练样本集进行聚类,按照权重分配模型计算各训练样本的权重,通过改进的KNN算法对测试样本进行分类。基于UCI数据集的大量实验结果表明,GAK-KNN算法的识别率和整体性能都优于传统KNN算法及其他改进算法。 展开更多
关键词 不平衡数据集 分类 k最邻近算法 权重分配模型 遗传算法 k-MEANS算法
下载PDF
基于增量学习的SVM-KNN网络入侵检测方法 被引量:26
3
作者 付子爔 徐洋 +2 位作者 吴招娣 许丹丹 谢晓尧 《计算机工程》 CAS CSCD 北大核心 2020年第4期115-122,共8页
为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设计IL-SVM-KNN分类器,并采用平衡k维树作为数据结构提升执行速度.训练阶段应用增量学习思想并考虑知识库的扩展,分类阶段则利用SVM和KNN算法将待分类数... 为满足入侵检测的实时性和准确性要求,通过结合支持向量机(SVM)和K最近邻(KNN)算法设计IL-SVM-KNN分类器,并采用平衡k维树作为数据结构提升执行速度.训练阶段应用增量学习思想并考虑知识库的扩展,分类阶段则利用SVM和KNN算法将待分类数据分成3种情况应用不同的分类策略.基于KDD CUP99和NSL-KDD数据集进行实验,结果表明,IL-SVM-KNN能够区分正常流量和异常流量并准确判断异常流量的攻击类型,其准确率较KNN算法和SVM算法有明显提升,判断攻击类型的准确性高于决策树、随机森林和XGBoost算法,并且较两层卷积神经网络消耗时间更少,资源消耗更低. 展开更多
关键词 支持向量机 k最近邻算法 k维树 入侵检测 增量学习 卷积神经网络
下载PDF
一种基于近邻规则的缺失数据填补方法 被引量:15
4
作者 王凤梅 胡丽霞 《计算机工程》 CAS CSCD 2012年第21期53-55,62,共4页
数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间... 数据缺失是数据挖掘与分析过程中的常见问题,若直接删除含缺失的事例可能导致不可靠的决策。为此,针对缺失数据的填补问题,提出一种基于近邻规则的缺失数据填补方法。根据关联规则的后件数据项进行分类,计算分类后的规则项与缺失项集间的相似度,用最相似的规则项值填补缺失值。实验结果表明,该方法具有较高的填补正确率。 展开更多
关键词 关联规则 缺失数据 填补 近邻规则 相似度 k最近邻法
下载PDF
基于支持向量机和k-近邻分类器的多特征融合方法 被引量:14
5
作者 陈丽 陈静 《计算机应用》 CSCD 北大核心 2009年第3期833-835,共3页
针对传统分类方法只采用一种分类器而存在的片面性,分类精度不高,以及支持向量机分类超平面附近点易错分的问题,提出了基于支持向量机(SVM)和k-近邻(KNN)的多特征融合方法。在该算法中,设样本集特征可分为L组,先用SVM算法根据训练集中... 针对传统分类方法只采用一种分类器而存在的片面性,分类精度不高,以及支持向量机分类超平面附近点易错分的问题,提出了基于支持向量机(SVM)和k-近邻(KNN)的多特征融合方法。在该算法中,设样本集特征可分为L组,先用SVM算法根据训练集中每组特征数据构造分类超平面,共构造L个;其次用SVM-KNN方法对测试集进行测试,得到由L组后验概率构成的决策轮廓矩阵;最后将其进行多特征融合,输出最终的分类结果。用鸢尾属植物数据进行了数值实验,实验结果表明:采用基于SVM-KNN的多特征融合方法比单独使用一种SVM或SVM-KNN方法的平均预测精度分别提高了28.7%和1.9%。 展开更多
关键词 支持向量机 k-近邻 多特征融合 后验概率
下载PDF
新的CDF文本分类特征提取方法 被引量:11
6
作者 熊忠阳 蒋健 张玉芳 《计算机应用》 CSCD 北大核心 2009年第7期1755-1757,共3页
对高维的特征集进行降维是文本分类过程中的一个重要环节。在研究了现有的特征降维技术的基础上,对部分常用的特征提取方法做了简要的分析,之后结合类间集中度、类内分散度和类内平均频度,提出了一个新的特征提取方法,即CDF方法。实验采... 对高维的特征集进行降维是文本分类过程中的一个重要环节。在研究了现有的特征降维技术的基础上,对部分常用的特征提取方法做了简要的分析,之后结合类间集中度、类内分散度和类内平均频度,提出了一个新的特征提取方法,即CDF方法。实验采用K-最近邻分类算法(KNN)来考查CDF方法的有效性。结果表明该方法简单有效,能够取得比传统特征提取方法更优的降维效果。 展开更多
关键词 文本分类 降维 特征提取 k-最近邻分类算法 评价函数
下载PDF
基于主成分分析和最近邻算法的断层识别研究 被引量:11
7
作者 邹冠贵 任珂 +2 位作者 吉寅 丁建宇 张少敏 《煤田地质与勘探》 CSCD 北大核心 2021年第4期15-23,共9页
断层是影响煤矿安全的致灾地质因素,查明断层特征是煤矿三维地震勘探的主要目的之一。常规断层解释中采用的人机交互解释方法,其可靠性在一定程度上取决于解释者的经验。为提高断层解释精度,提出一种基于主成分分析和最近邻算法来检测... 断层是影响煤矿安全的致灾地质因素,查明断层特征是煤矿三维地震勘探的主要目的之一。常规断层解释中采用的人机交互解释方法,其可靠性在一定程度上取决于解释者的经验。为提高断层解释精度,提出一种基于主成分分析和最近邻算法来检测沿目标层断层分布的方法。首先,选择峰峰矿区羊东煤矿作为研究区域,从矿区高精度处理后获得的三维地震数据中提取10个地震属性;然后,采用主成分分析法(PCA)将上述10个地震属性整合为6个综合属性;同时,将属性信息与从矿区15口井和3条巷道确定的139个点的断层信息相结合,构建已知数据信息;在该数据信息的基础上,分别组建出数据集1和数据集2两种数据集,2种数据集的训练集与测试集的比分别为9∶1和3∶7。利用这些数据集以及十折交叉验证的方法,开展基于最近邻算法(kNN)的断层识别准确率测试,数据集1的测试准确率为87.75%,数据集2的测试准确率为71.63%;这表明训练数据量越大,断层识别准确率越高,从而也说明高密度三维地震在该方法的应用中存在一定优势。在对kNN模型的分类性能进行测试时,使用通过PCA进行降维处理的数据作为输入,计算出的分类准确率分别为89.23%和73.79%;这是因为PCA降低了原始输入特征的维数,从而减少了所需的计算量并提高了这些特征的表征能力。综合结果表明,结合PCA和kNN方法可以有效地识别断层分布,减少主观人为因素的影响,提高断层解释的效率。 展开更多
关键词 地震多属性 主成分分析 最近邻算法 断层识别 峰峰矿区羊东煤矿
下载PDF
一种基于Canopy和粗糙集的CRS-KNN文本分类算法 被引量:9
8
作者 姚彬修 倪建成 +2 位作者 于苹苹 曹博 李淋淋 《计算机工程与应用》 CSCD 北大核心 2017年第11期172-177,共6页
针对KNN算法的分类效率随着训练集规模和特征维数的增加而逐渐降低的问题,提出了一种基于Canopy和粗糙集的CRS-KNN(Canopy Rough Set-KNN)文本分类算法。算法首先将待处理的文本数据通过Canopy进行聚类,然后对得到的每个类簇运用粗糙集... 针对KNN算法的分类效率随着训练集规模和特征维数的增加而逐渐降低的问题,提出了一种基于Canopy和粗糙集的CRS-KNN(Canopy Rough Set-KNN)文本分类算法。算法首先将待处理的文本数据通过Canopy进行聚类,然后对得到的每个类簇运用粗糙集理论进行上、下近似分割,对于分割得到的下近似区域无需再进行分类,而通过上、下近似作差所得的边界区域数据需要通过KNN算法确定其最终的类别。实验结果表明,该算法降低了KNN算法的数据计算规模,提高了分类效率。同时与传统的KNN算法和基于聚类改进的KNN文本分类算法相比,准确率、召回率和F_1值都得到了一定的提高。 展开更多
关键词 Canopy聚类 粗糙集 k-最近邻(knn)算法 文本分类
下载PDF
用于不均衡数据集分类的KNN算法 被引量:9
9
作者 孙晓燕 张化祥 计华 《计算机工程与应用》 CSCD 北大核心 2011年第28期143-145,236,共4页
针对KNN在处理不均衡数据集时,少数类分类精度不高的问题,提出了一种改进的算法G-KNN。该算法对少数类样本使用交叉算子和变异算子生成部分新的少数类样本,若新生成的少数类样本到父代样本的欧几里德距离小于父代少数类之间的最大距离,... 针对KNN在处理不均衡数据集时,少数类分类精度不高的问题,提出了一种改进的算法G-KNN。该算法对少数类样本使用交叉算子和变异算子生成部分新的少数类样本,若新生成的少数类样本到父代样本的欧几里德距离小于父代少数类之间的最大距离,则认为是有效样本,并把这类样本加入到下轮产生少数类的过程中。在UCI数据集上进行测试,实验结果表明,该方法与KNN算法中应用随机抽样相比,在提高少数类的分类精度方面取得了较好的效果。 展开更多
关键词 不均衡数据集 k最近邻居(knn)算法 过抽样 交叉算子
下载PDF
基于BP改进的KNN算法在北京密云土地覆盖分类中的应用 被引量:8
10
作者 王佃来 宿爱霞 刘文萍 《科学技术与工程》 北大核心 2020年第23期9464-9471,共8页
针对k近邻(k-nearest neighbor,KNN)算法在土地覆盖分类中存在将山体阴影覆盖下植被误分成水体的问题,提出改进的KNN算法。改进算法充分利用神经网络能有效区分山体阴影覆盖下植被和水体的特性,实现BP神经网络与KNN算法的融合,整体提高... 针对k近邻(k-nearest neighbor,KNN)算法在土地覆盖分类中存在将山体阴影覆盖下植被误分成水体的问题,提出改进的KNN算法。改进算法充分利用神经网络能有效区分山体阴影覆盖下植被和水体的特性,实现BP神经网络与KNN算法的融合,整体提高了北京市密云区土地覆盖分类精度。实验结果表明:相对于支持向量机(support vector machine,SVM)、随机森林、BP神经网络和KNN算法,改进算法分类精度最高,达到了95.20%,分类精度比未改进KNN算法提高了6.43%。改进算法的Kappa系数在对比算法中也是最高的,达到0.93。此外,实验结果也表明改进算法可应用于中分辨率遥感图像分类中。 展开更多
关键词 knn算法 土地覆盖分类 遥感图像 BP神经网络
下载PDF
基于KNN的不良文本过滤方法 被引量:7
11
作者 王洪彬 刘晓洁 《计算机工程》 CAS CSCD 北大核心 2009年第24期69-71,共3页
不良文本过滤是当前的一个研究热点。通过对χ2统计量的具体分析,证明χ2统计量在2类文本特征项提取过程中特有的优势。提出正面文本阈值δ,并从理论上推断出该值的大小。在此基础上改进KNN算法,消除了KNN算法中N的不确定性,彻底实现了... 不良文本过滤是当前的一个研究热点。通过对χ2统计量的具体分析,证明χ2统计量在2类文本特征项提取过程中特有的优势。提出正面文本阈值δ,并从理论上推断出该值的大小。在此基础上改进KNN算法,消除了KNN算法中N的不确定性,彻底实现了无参性,大幅减少了分类所用的时间。实验证明,该算法符合Web实时在线分类的要求。 展开更多
关键词 knn算法 不良文本过滤 χ2统计量
下载PDF
基于KNN算法的船舶操纵智能评估系统 被引量:7
12
作者 张叶 任鸿翔 王德龙 《上海海事大学学报》 北大核心 2021年第4期33-38,共6页
为降低主观因素对船舶操纵评估结果的影响,提出一种基于K近邻(K-nearest neighbor,KNN)算法和多目标优化理论的船舶操纵智能评估模型。根据安全、平稳、高效的航行要求,建立这个模型的评价指标体系;采用变异系数法获得各评价指标的权重... 为降低主观因素对船舶操纵评估结果的影响,提出一种基于K近邻(K-nearest neighbor,KNN)算法和多目标优化理论的船舶操纵智能评估模型。根据安全、平稳、高效的航行要求,建立这个模型的评价指标体系;采用变异系数法获得各评价指标的权重;根据评价指标提取对应特征值,构建未标记样本集;基于多目标优化理论建立评价指标目标函数,得到每个样本的成绩并排序,根据样本成绩构建标记样本集;利用KNN算法对待评估样本进行分类,得到本次操作的结果。利用C++语言开发船舶操纵智能评估系统,测试结果表明,系统评估结果与专家评估结果基本一致,能客观、准确实现船舶操纵自动评估。 展开更多
关键词 k近邻(knn)算法 船舶操纵评估 智能评估系统 航海模拟器 评价指标
下载PDF
面向申威架构的KNN并行算法实现与优化 被引量:3
13
作者 王其涵 庞建民 +3 位作者 岳峰 祝迪 沈莉 肖谦 《计算机工程》 CAS CSCD 北大核心 2023年第5期286-294,共9页
K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实... K近邻(KNN)是人工智能中最常用的分类算法,其性能提升对于海量数据的整理分析、大数据分类等任务具有重要意义。目前新一代神威超级计算机正处于应用发展的初始阶段,结合新一代申威异构众核处理器的结构特性,充分利用庞大的计算资源实现高效的KNN算法是海量数据分析整理的现实需求。根据SW26010pro处理器的结构特性,采用主从加速编程模型实现一种基础版本的KNN并行算法,其将计算核心传输到从核上,实现了线程级并行。分析影响基础并行算法性能的关键因素并提出优化算法SWKNN,不同于基础并行KNN算法的任务划分方式,SWKNN采用任务重划分策略,以避免冗余计算开销。通过数据流水优化、从核间通信优化、二次负载均衡优化等步骤减少不必要的通信开销,从而有效缓解访存压力并进一步提升算法性能。实验结果表明,与串行KNN算法相比,面向申威架构的基础并行KNN算法在SW26010pro处理器的单核组上可以获得最高48倍的加速效果,在同等数据规模下,SWKNN算法较基础并行KNN算法又可以获得最高399倍的加速效果。 展开更多
关键词 异构众核处理器 k近邻算法 并行计算 算法优化 分类性能
下载PDF
基于kNN算法的电力系统设备隐患在线识别方法研究 被引量:7
14
作者 段翔兮 张华 +2 位作者 高艺文 孙永超 胡蓉 《电气传动》 2021年第22期69-73,共5页
传统电力系统设备隐患在线识别方法识别准确率低,为了解决上述问题,基于kNN算法研究了一种新的电力系统设备隐患在线识别方法。通过使用Vicon完成设备状态捕捉,采用kNN算法提取电力系统设备隐患信息,以此来完成对于设备运行状态的分析,... 传统电力系统设备隐患在线识别方法识别准确率低,为了解决上述问题,基于kNN算法研究了一种新的电力系统设备隐患在线识别方法。通过使用Vicon完成设备状态捕捉,采用kNN算法提取电力系统设备隐患信息,以此来完成对于设备运行状态的分析,使用8个定位点对设备进行标记,使得摄像头可以捕捉到设备运行的动作,以此来判断出是否存在故障数据。研究静电力的凹凸特性,工作人员通过感触觉反馈方法去模拟采取静电力的反馈的波形,这样就可以高度地还原设备模型状况的真实性,利用工作人员的触觉采集指纹进行kNN算法和人工智能分析,确定设备是否存在故障。实验结果表明,基于kNN算法的电力系统设备隐患在线识别方法识别准确率高于传统方法,识别能力更强。 展开更多
关键词 knn算法 电力系统 设备隐患 在线识别
下载PDF
新的文本分类特征选择方法研究 被引量:7
15
作者 张玉芳 王勇 +1 位作者 刘明 熊忠阳 《计算机工程与应用》 CSCD 2013年第5期132-135,共4页
特征降维是文本分类过程中的一个重要环节。在现有特征选择方法的基础上,综合考虑特征词在正类和负类中的分布性质,综合四种衡量特征类别区分能力的指标,提出了一个新的特征选择方法,即综合比率(CR)方法。实验采用K-最近邻分类算法(KNN... 特征降维是文本分类过程中的一个重要环节。在现有特征选择方法的基础上,综合考虑特征词在正类和负类中的分布性质,综合四种衡量特征类别区分能力的指标,提出了一个新的特征选择方法,即综合比率(CR)方法。实验采用K-最近邻分类算法(KNN)来考查CR方法的有效性,实验结果表明该方法能够取得比现有特征选择方法更优的降维效果。 展开更多
关键词 特征降维 文本分类 特征选择 综合比率 k-最近邻分类算法
下载PDF
基于自适应烟花算法和k近邻算法的特征选择算法 被引量:6
16
作者 黄欣 莫海淼 赵志刚 《计算机应用与软件》 北大核心 2020年第5期268-274,共7页
特征选择是从原始特征集中选取若干个特征子集,并降低数据维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,将自适应烟花算法进行离散化处理,使用k近邻算法作为分类器,并提出新的特征选择算法。将特征子集引入目标函... 特征选择是从原始特征集中选取若干个特征子集,并降低数据维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,将自适应烟花算法进行离散化处理,使用k近邻算法作为分类器,并提出新的特征选择算法。将特征子集引入目标函数,并使用惩罚因子来处理约束条件,采用十折交叉验证法来检验分类效果。使用机器学习常用的UCI数据集进行仿真实验,结果表明:与增强烟花算法、烟花算法、蝙蝠算法、粒子群算法和自适应粒子群算法相比,该算法的性能更优。 展开更多
关键词 自适应烟花算法 特征选择 分类 k近邻算法 十折交叉验证
下载PDF
基于均衡适配迁移的异源域样本轴承故障诊断 被引量:2
17
作者 朱旭东 《机电工程》 CAS 北大核心 2023年第3期361-369,共9页
由于轴承带标签的故障样本数量较少,且源域数据与目标域数据存在异域问题,会导致轴承诊断准确率大大下降。为此,对异源域样本条件下的轴承故障诊断问题进行了研究,提出了基于改进均衡分布适配迁移学习的轴承故障迭代诊断方法。首先,分... 由于轴承带标签的故障样本数量较少,且源域数据与目标域数据存在异域问题,会导致轴承诊断准确率大大下降。为此,对异源域样本条件下的轴承故障诊断问题进行了研究,提出了基于改进均衡分布适配迁移学习的轴承故障迭代诊断方法。首先,分析了滚动轴承的结构和不同部位故障的信号特征;介绍了迁移学习工作原理,基于动态的均衡因子,提出了改进均衡分布适配方法,解决了边缘分布和条件分布差异性未知导致的异源域适配难题;然后,给出了基于K近邻算法(KNN)的伪标签初步确定方法,提出了基于迁移学习和KNN算法的目标域伪标签迭代优化方法,确定了目标域样本的故障标签;最后,采用实验数据对该诊断方法的有效性进行了验证,并将其与其他两种方法进行了异域样本的故障诊断,对其诊断准确率进行了对比。研究结果表明:在凯斯西储轴承实验中,基于迁移学习、迁移成分分析(TCA)+KNN的诊断准确率均值分别为93.72%和75.52%;在西安交通大学轴承实验中,基于迁移学习、TCA+KNN的诊断准确率分别为94.80%和70.40%。上述实验结果验证了基于迁移学习的迭代诊断方法在异源域样本故障诊断中的优越性。 展开更多
关键词 轴承故障诊断准确率 异源域样本 改进均衡适配 迁移学习 k近邻算法 源域数据 目标域数据
下载PDF
像素归一化方法在恶意代码可视分析中的应用 被引量:5
18
作者 任卓君 韩秀玲 +1 位作者 孔德凤 陈光 《计算机工程与应用》 CSCD 北大核心 2016年第21期121-125,共5页
恶意代码的编写者通常采用自动化的手段开发恶意代码变种,使得恶意代码的数量呈现迅猛增长的态势。由于自动化的方式会重复利用恶意代码中的核心模块,因此也为病毒研究人员辨识和区分恶意代码族提供了有利依据。借鉴灰度图的思想,利用K-... 恶意代码的编写者通常采用自动化的手段开发恶意代码变种,使得恶意代码的数量呈现迅猛增长的态势。由于自动化的方式会重复利用恶意代码中的核心模块,因此也为病毒研究人员辨识和区分恶意代码族提供了有利依据。借鉴灰度图的思想,利用K-Nearest Neighbor(KNN)分类算法,给出了一种新的研究恶意代码谱系分类的可视化方法。其基本思想是,通过将二进制文件转换成双色通道的位图和像素归一图,从可视化的角度标识恶意样本特性,以此实现恶意代码族的相似度比较及分类。实验结果表明采用了像素归一化的降维映射机制能显著地减小文件可视特征的呈现时间开销,且该方法以自动化操作的方式运用Jaccard距离算法进行快速相似度比较,实现了恶意代码样本的有效分类,提高了分析人员的识别效率。 展开更多
关键词 恶意代码 可视化 谱系分析 Jaccard距离 k最邻近节点算法(knn)
下载PDF
基于KNN算法的网络入侵检测技术开发 被引量:1
19
作者 吴晟懿 《信息与电脑》 2023年第5期67-69,共3页
传统算法在网络入侵检测方面存在部分问题,为了进一步提升检测水平,在网络信息攻击手段日益增多的背景下,提出了一种基于最邻近结点(K-NearestNeighbor,KNN)算法的网络入侵检测技术方法。该方法将粒子优化解决局部极值问题,以实现改善... 传统算法在网络入侵检测方面存在部分问题,为了进一步提升检测水平,在网络信息攻击手段日益增多的背景下,提出了一种基于最邻近结点(K-NearestNeighbor,KNN)算法的网络入侵检测技术方法。该方法将粒子优化解决局部极值问题,以实现改善网络入侵检测技术的目的。测试结果表明,基于KNN算法的网络入侵检测技术能够较好地识别攻击类型,其误检率显著优于Rabin-Karp、Boyer-Moore、Colussi这3种传统算法,验证了算法的有效性,能够较好地应用于网络入侵行为的预测,表现出良好的预测精度。 展开更多
关键词 knn算法 网络入侵检测 粒子群落 迭代
下载PDF
基于粗糙KNN算法的文本分类方法 被引量:5
20
作者 王渊 刘业政 姜元春 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第12期1513-1517,共5页
在文本分类中,数据规模过大或文本分布不均匀对传统KNN算法的准确率和效率具有重要影响。为了解决该问题,文章提出一种基于粗糙KNN(k-nearest neighbor)算法的文本分类新方法。首先引入粗糙集中的上下近似概念定义各类文本的上下近似空... 在文本分类中,数据规模过大或文本分布不均匀对传统KNN算法的准确率和效率具有重要影响。为了解决该问题,文章提出一种基于粗糙KNN(k-nearest neighbor)算法的文本分类新方法。首先引入粗糙集中的上下近似概念定义各类文本的上下近似空间,将文本向量空间分为核心和混合2大区域;然后改进传统KNN算法的隶属度函数;再针对不同的文本区域,采取差异化的分类策略以提高分类的效率和准确率。实验表明,基于粗糙KNN算法的文本分类方法在提高分类准确率的同时,分类的效率也有很大提高。 展开更多
关键词 文本分类 粗糙集 knn算法 核心区域 混合区域
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部