Background:The ergogenic effects of caffeine intake on exercise performance are well-established,even if differences exist among individuals in response to caffeine intake.The genetic variation of a specific gene,huma...Background:The ergogenic effects of caffeine intake on exercise performance are well-established,even if differences exist among individuals in response to caffeine intake.The genetic variation of a specific gene,human cytochrome P450 enzyme 1A2(CYP1A2)(rs762551),may be one reason for this difference.This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on athletes’exercise performance after caffeine intake.Methods:A literature search through 4 databases(Web of Science,PubMed,Scopus,and China National Knowledge Infrastructure)was conducted until March 2023.The effect size was expressed as the weighted mean difference(WMD)by calculating fixed effects meta-analysis if heterogeneity was not significant(I^(2)≤50%and p≥0.1).Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2.Results:The final number of studies meeting the inclusion criteria was 12(n=666 participants).The overall analysis showed that the cycling time trial significantly improved after caffeine intake(WMD=-0.48,95%confidence interval(95%CI):-0.83 to-0.13,p=0.007).In subgroup analyses,acute caffeine intake improved cycling time trial only in individuals with the A allele(WMD=-0.90,95%CI:-1.48 to-0.33,p=0.002),but not the C allele(WMD=-0.08,95%CI:-0.32 to 0.17,p=0.53).Caffeine supplementation did not influence the Wingate(WMD=8.07,95%CI:-22.04 to 38.18,p=0.60)or countermovement jump test(CMJ)performance(WMD=1.17,95%CI:-0.02 to 2.36,p=0.05),and these outcomes were not influenced by CYP1A2 genotype.Conclusion:Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation.However,compared to placebo,acute caffeine supplementation failed to increase the Wingate or CMJ performance,regardless of CYP1A2 genotype.展开更多
文摘Background:The ergogenic effects of caffeine intake on exercise performance are well-established,even if differences exist among individuals in response to caffeine intake.The genetic variation of a specific gene,human cytochrome P450 enzyme 1A2(CYP1A2)(rs762551),may be one reason for this difference.This systematic review and meta-analysis aimed to comprehensively evaluate the influence of CYP1A2 gene types on athletes’exercise performance after caffeine intake.Methods:A literature search through 4 databases(Web of Science,PubMed,Scopus,and China National Knowledge Infrastructure)was conducted until March 2023.The effect size was expressed as the weighted mean difference(WMD)by calculating fixed effects meta-analysis if heterogeneity was not significant(I^(2)≤50%and p≥0.1).Subgroup analyses were performed based on AA and AC/CC genotype of CYP1A2.Results:The final number of studies meeting the inclusion criteria was 12(n=666 participants).The overall analysis showed that the cycling time trial significantly improved after caffeine intake(WMD=-0.48,95%confidence interval(95%CI):-0.83 to-0.13,p=0.007).In subgroup analyses,acute caffeine intake improved cycling time trial only in individuals with the A allele(WMD=-0.90,95%CI:-1.48 to-0.33,p=0.002),but not the C allele(WMD=-0.08,95%CI:-0.32 to 0.17,p=0.53).Caffeine supplementation did not influence the Wingate(WMD=8.07,95%CI:-22.04 to 38.18,p=0.60)or countermovement jump test(CMJ)performance(WMD=1.17,95%CI:-0.02 to 2.36,p=0.05),and these outcomes were not influenced by CYP1A2 genotype.Conclusion:Participants with the CYP1A2 genotype with A allele improved their cycling time trials after caffeine supplementation.However,compared to placebo,acute caffeine supplementation failed to increase the Wingate or CMJ performance,regardless of CYP1A2 genotype.