This paper describes the blade containment tests for six sets of single model blade on a vertical breaking down tester with excess revolution.The experimental results indicate that the blade body fragment flying off i...This paper describes the blade containment tests for six sets of single model blade on a vertical breaking down tester with excess revolution.The experimental results indicate that the blade body fragment flying off impacts against the model aeroengine case time and again.The incident angle of the blade fragment against the case in the initial impact is smaller than in the later impacts,the case damage of the first impact is smaller than that of the final impact,and the impacts of the blade fragment against the case make the blade fragment crimple.In principle the experimental results of the blade fragment containment and non containment are consistent with the containment curve of single compressor blade (for use only in case of the blade body) in the Spey MK202 Stressing Standards (EGD 3) and are on the safe side.It is the preliminary conclusion that the containment curve of single compressor blade (for use only in case of the blade body) in EGD 3 can be used to predict the containment of the similar blade.展开更多
A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid r...A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving inter-face is captured by the level set function, and the interface velocity is resolved by "one-side" velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the interface and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computational domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effectively capture the "shock wave"-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure structure with peak, plateau and valley in the later stage of bubble oscillating.展开更多
This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities mid impinging mlgles, with the natural-gas pipeline environment si...This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities mid impinging mlgles, with the natural-gas pipeline environment simulated by a self-assembled impingement jet sys- tem. Surface molphology determination, electrochemical measurements, mid hydromechaziics numerical analysis were cmlied out to study the FAC behavior. The results demonstrate that pitting corrosion was the primary mode of corrosion in 13Cr stainless steel. High-flow-rate gas destroyed the passive film mid decreased the pitting potential, resulting in more serious corrosion. The corrosion degree witk various im- pact mlgles showed the following order: 90~ 〉 60~ 〉 45~. The shear force and the electrolyte from the flowing gas were concluded to be the determinm^t factors of FAC, whereas the shear force was the main factor responsible for destroying the passive film.展开更多
文摘This paper describes the blade containment tests for six sets of single model blade on a vertical breaking down tester with excess revolution.The experimental results indicate that the blade body fragment flying off impacts against the model aeroengine case time and again.The incident angle of the blade fragment against the case in the initial impact is smaller than in the later impacts,the case damage of the first impact is smaller than that of the final impact,and the impacts of the blade fragment against the case make the blade fragment crimple.In principle the experimental results of the blade fragment containment and non containment are consistent with the containment curve of single compressor blade (for use only in case of the blade body) in the Spey MK202 Stressing Standards (EGD 3) and are on the safe side.It is the preliminary conclusion that the containment curve of single compressor blade (for use only in case of the blade body) in EGD 3 can be used to predict the containment of the similar blade.
基金the National Natural Science Foundation of China(10272032 and 10672043).
文摘A level set method of non-uniform grids is used to simulate the whole evolution of a cavitation bubble, including its growth, collapse and rebound near a rigid wall. Single-phase Navier-Stokes equation in the liquid region is solved by MAC projection algorithm combined with second-order ENO scheme for the advection terms. The moving inter-face is captured by the level set function, and the interface velocity is resolved by "one-side" velocity extension from the liquid region to the bubble region, complementing the second-order weighted least squares method across the interface and projection inside bubble. The use of non-uniform grid overcomes the difficulty caused by the large computational domain and very small bubble size. The computation is very stable without suffering from large flow-field gradients, and the results are in good agreements with other studies. The bubble interface kinematics, dynamics and its effect on the wall are highlighted, which shows that the code can effectively capture the "shock wave"-like pressure and velocity at jet impact, toroidal bubble, and complicated pressure structure with peak, plateau and valley in the later stage of bubble oscillating.
基金supported by the National Environmental Corrosion Platform (NECP)the National Key Technology R&D Program of China (No. 2011BAK06B01-01-02)the Fundamental Research Funds for the Central Universities of china (No. FRF-BR-17-028A)
文摘This work investigated the flow-accelerated corrosion (FAC) behavior of 13Cr in a wet CO2-containing environment at different flowing gas velocities mid impinging mlgles, with the natural-gas pipeline environment simulated by a self-assembled impingement jet sys- tem. Surface molphology determination, electrochemical measurements, mid hydromechaziics numerical analysis were cmlied out to study the FAC behavior. The results demonstrate that pitting corrosion was the primary mode of corrosion in 13Cr stainless steel. High-flow-rate gas destroyed the passive film mid decreased the pitting potential, resulting in more serious corrosion. The corrosion degree witk various im- pact mlgles showed the following order: 90~ 〉 60~ 〉 45~. The shear force and the electrolyte from the flowing gas were concluded to be the determinm^t factors of FAC, whereas the shear force was the main factor responsible for destroying the passive film.