In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.