基于自行研制的磁驱动准等熵压缩加载实验装置CQ-1.5,利用全光纤位移干涉仪(Doppler Pins System,DPS)、激光速度干涉计(Velocity Interferometer System for AnyReflectors,VISAR)两种测试手段,以及反积分数据处理方法,实验测量了40 GP...基于自行研制的磁驱动准等熵压缩加载实验装置CQ-1.5,利用全光纤位移干涉仪(Doppler Pins System,DPS)、激光速度干涉计(Velocity Interferometer System for AnyReflectors,VISAR)两种测试手段,以及反积分数据处理方法,实验测量了40 GPa压力范围内T1铜、LY12硬铝和L1纯铝3种材料的准等熵压缩线,将实验准等熵压缩线与基于Grüneisen状态方程的理论等熵压缩线和冲击Hugoniot线进行了比较。结果表明,在该压力范围内,实验准等熵压缩线与理论等熵压缩线相一致,两者偏差小于3%;实验准等熵压缩线靠近冲击Hugoniot线,位于其下方,与国外文献发表的结果相同,进一步表明,实验测量结果正确可靠。展开更多
Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.A...Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.展开更多
The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degen...The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.展开更多
This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are o...This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are obtained and the generalized Huygan's principle is exhibited. The approch of the paper is based on the detailed analysis of the Green function of Iinearized system. This is used to study the coupling of nonlinear diffesion waves.展开更多
Using the NCAR/NCEP daily reanalysis data from 1 December 2004 to 28 February 2005, the isentropic potential vorticity (IPV) analysis of a strong cold wave from 22 December 2004 to 1 January 2005 was made. It is fou...Using the NCAR/NCEP daily reanalysis data from 1 December 2004 to 28 February 2005, the isentropic potential vorticity (IPV) analysis of a strong cold wave from 22 December 2004 to 1 January 2005 was made. It is found that the strong cold air of the cold wave originated from the lower stratosphere and upper troposphere of the high latitude in the Eurasian continent and the Arctic area. Before the outbreak of the cold wave, the strong cold air of high PV propagated down to the south of Lake Baikal, and was cut off by a low PV air of low latitude origin, forming a dipole-type circulation pattern with the low PV center (blocking high) in the northern Eurasian continent and the high PV one (low vortex) in the southern part. Along with decaying of the low PV center, the high PV center (strong cold air) moved towards the southeast along the northern flank of the Tibetan Plateau. When it arrived in East China, the air column of high PV rapidly stretched downward, leading to increase in its cyclonic vorticity, which made the East Asian major trough to deepen rapidly, and finally induced the outbreak of the cold wave. Further analysis indicates that in the southward and downward propagation process of the high PV center, the air flow west and north of the high PV center on isentropic surface subsided along the isentropic surface, resulting in rapid development of Siberian high, finally leading to the southward outbreak of the strong cold wave.展开更多
A compactness frame of the Lax-Friedrichs scheme for the equations of gas dynamics is obtained by using some embedding theorems and an analysis of the difference scheme and the weak entropy.
We study the vanishing viscosity of the Navier-Stokes equations for interacting shocks. Given an entropy solution to p-system which consists of two different families of shocks interacting at some positive time,we sho...We study the vanishing viscosity of the Navier-Stokes equations for interacting shocks. Given an entropy solution to p-system which consists of two different families of shocks interacting at some positive time,we show that such entropy solution is the vanishing viscosity limit of a family of global smooth solutions to the isentropic Navier-Stokes equations. The key point of the proofs is to derive the estimates separately before and after the interaction time and connect the incoming and outgoing viscous shock profiles.展开更多
Dry intrusion plays an important role in the explosive development of cyclones and the evolution of cold fronts. Characteristics of dry intrusion during a rainfall event that occurred in northern China are analyzed in...Dry intrusion plays an important role in the explosive development of cyclones and the evolution of cold fronts. Characteristics of dry intrusion during a rainfall event that occurred in northern China are analyzed in detail in this paper. The IM (ingredients-based methodology) developed by Doswell et al. in 1996 and Wetzel and Martin in 2001 is utilized. All the physical representations of dry intrusion defined in the past studies, such as low relative humidity, cold advection, and high potential vorticity (on either isobaric or isentropic surfaces), are combined into a simple and convenient physical parameter to characterize dry intrusion. This is a new attempt to extend the IM that was primarily applied to research on heavy rainfall to the study of dry intrusion. The new dry intrusion parameter is used to analyze the isentropic evolution of dry intrusion during the rainfall event. The results show that this parameter can better quantify the intensity of dry intrusion and diagnose its evolution shown in satellite infrared and water vapor imageries. It is found that dry intrusion maintains during the rainfall period. The intensity of precipitation increases with the increasing dry intrusion, which has pushed the rainy region southeastward. From the results on the isentropic surface and the corresponding isobaric surface, it is inferred that the analyses of dry intrusion on both surfaces are consistent with each other. The isentropic analysis of dry intrusion reveals that cold and dry air at the upper level overruns that in the lower troposphere where moist and warm air is located. Thus, potential instability is built up in the vertical direction, which favors the occurrence of precipitation. In practice, we may identify dry intrusion regions by tracking strong signals of the dry intrusion parameter, and further identify the instability near the dry intrusion regions. This will aid in improving the accuracy of precipitation forecast.展开更多
This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic p...This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.展开更多
The Brisbane Tropical Cyclone Warning Centre has used two forms of a thermal advection diagnostic to identify relatively large areas of isentropic ascent and descent for many years. When the thermodynamic conditions a...The Brisbane Tropical Cyclone Warning Centre has used two forms of a thermal advection diagnostic to identify relatively large areas of isentropic ascent and descent for many years. When the thermodynamic conditions are favourable the ascent regions are correlated with significant outbreaks of convection that produce heavy rainfall. The diagnostic is based on the relationship between geostrophic winds that turn with height and flow perpendicular to thickness contours. As the relationship is also valid for the more general case of gradient winds, the diagnostic, in theory, should be useful for most heavy-rain-bearing tropical systems. A climatology of rainfall rate with one form of the diagnostic is presented at two Queensland locations(one tropical and one subtropical) that demonstrates a clear relationship between the isentropic ascent wind distribution and heavy to extreme rainfall.The diagnostics applied to numerical weather prediction models are valuable forecast tools as they identify heavy rainfall threat regions within which the extreme rain is likely to fall, whereas the rainfall from the same models is often under predicted or has large location errors. Applied to tropical lows and tropical cyclones the diagnostics have been used successfully to forecast tropical cyclone formation and rapid intensification and decay. Examples of such intensification and decay from around the world are presented, as well as a climatology of the diagnostic applied to intensifying tropical cyclones in the Australian region.展开更多
The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditi...The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditions. It is shown that the semiclassical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the global existence of weak solutions is proved.展开更多
The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove...The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.展开更多
In this paper, the authors consider the inverse piston problem for the system of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston velocity can be uniquely determined by the initia...In this paper, the authors consider the inverse piston problem for the system of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston velocity can be uniquely determined by the initial state of the gas on the right side of the piston and the position of the forward shock.展开更多
文摘基于自行研制的磁驱动准等熵压缩加载实验装置CQ-1.5,利用全光纤位移干涉仪(Doppler Pins System,DPS)、激光速度干涉计(Velocity Interferometer System for AnyReflectors,VISAR)两种测试手段,以及反积分数据处理方法,实验测量了40 GPa压力范围内T1铜、LY12硬铝和L1纯铝3种材料的准等熵压缩线,将实验准等熵压缩线与基于Grüneisen状态方程的理论等熵压缩线和冲击Hugoniot线进行了比较。结果表明,在该压力范围内,实验准等熵压缩线与理论等熵压缩线相一致,两者偏差小于3%;实验准等熵压缩线靠近冲击Hugoniot线,位于其下方,与国外文献发表的结果相同,进一步表明,实验测量结果正确可靠。
文摘Pulsed power technology,whereas the electrical energy stored in a relative long period is released in much shorter timescale,is an efficient method to create high energy density physics(HEDP)conditions in laboratory.Around the beginning of this century,China Academy of Engineering Physics(CAEP)began to build some experimental facilities for HEDP investigations,among which the Primary Test Stand(PTS),a multi-module pulsed power facility with a nominal current of 10 MA and a current rising time~90 ns,is an important achievement on the roadmap of the electro-magnetically driven inertial confinement fusion(ICF)researches.PTS is the first pulsed power facility beyond 10 TW in China.Therefore,all the technologies have to be demonstrated,and all the engineering issues have to be overcome.In this article,the research outline,key technologies and the preliminary HEDP experiments are reviewed.Prospects on HEDP research on PTS and pulsed power development for the next step are also discussed.
基金Project supported by the National Natural Science Foundation of China (No,10131050)the Science and Technology Committee Foundation of Shanghai (No.03JC14013).
文摘The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then under some hvpotheses on the initial data. the regular solution exists globally.
基金Supported in part by National Natural Science Foundationof China (19871065) Hua-Cheng Grant
文摘This paper is concerned with the dissipation of solutions of the isentropic Navier-Stokes equations in even and bigger than two multi-dimensions. Pointwise estimates of the time-asymptotic shape of the solutions are obtained and the generalized Huygan's principle is exhibited. The approch of the paper is based on the detailed analysis of the Green function of Iinearized system. This is used to study the coupling of nonlinear diffesion waves.
基金the National Basic Research Program of China under Grant No.2006CB403604.
文摘Using the NCAR/NCEP daily reanalysis data from 1 December 2004 to 28 February 2005, the isentropic potential vorticity (IPV) analysis of a strong cold wave from 22 December 2004 to 1 January 2005 was made. It is found that the strong cold air of the cold wave originated from the lower stratosphere and upper troposphere of the high latitude in the Eurasian continent and the Arctic area. Before the outbreak of the cold wave, the strong cold air of high PV propagated down to the south of Lake Baikal, and was cut off by a low PV air of low latitude origin, forming a dipole-type circulation pattern with the low PV center (blocking high) in the northern Eurasian continent and the high PV one (low vortex) in the southern part. Along with decaying of the low PV center, the high PV center (strong cold air) moved towards the southeast along the northern flank of the Tibetan Plateau. When it arrived in East China, the air column of high PV rapidly stretched downward, leading to increase in its cyclonic vorticity, which made the East Asian major trough to deepen rapidly, and finally induced the outbreak of the cold wave. Further analysis indicates that in the southward and downward propagation process of the high PV center, the air flow west and north of the high PV center on isentropic surface subsided along the isentropic surface, resulting in rapid development of Siberian high, finally leading to the southward outbreak of the strong cold wave.
文摘A compactness frame of the Lax-Friedrichs scheme for the equations of gas dynamics is obtained by using some embedding theorems and an analysis of the difference scheme and the weak entropy.
基金supported by National Basic Research Program of China(973 Program)(Grant No.2011CB808002)the National Center for Mathematics and Interdisciplinary Sciences,Academy of Mathematics and Systems Science,Chinese Academy of Sciences and the Chinese Academy of Sciences Program for Cross&Cooperative Team of the Science&Technology Innovation,National Natural Sciences Foundation of China(Grant Nos.11171326,11371064 and 11401565)the General Research Fund of Hong Kong(Grant No.City U 103412)
文摘We study the vanishing viscosity of the Navier-Stokes equations for interacting shocks. Given an entropy solution to p-system which consists of two different families of shocks interacting at some positive time,we show that such entropy solution is the vanishing viscosity limit of a family of global smooth solutions to the isentropic Navier-Stokes equations. The key point of the proofs is to derive the estimates separately before and after the interaction time and connect the incoming and outgoing viscous shock profiles.
基金the National Natural Science Foundation of China under Grant Nos.40633016 and 40805001the Open Project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences,under Grant No.2009LASWB02.
文摘Dry intrusion plays an important role in the explosive development of cyclones and the evolution of cold fronts. Characteristics of dry intrusion during a rainfall event that occurred in northern China are analyzed in detail in this paper. The IM (ingredients-based methodology) developed by Doswell et al. in 1996 and Wetzel and Martin in 2001 is utilized. All the physical representations of dry intrusion defined in the past studies, such as low relative humidity, cold advection, and high potential vorticity (on either isobaric or isentropic surfaces), are combined into a simple and convenient physical parameter to characterize dry intrusion. This is a new attempt to extend the IM that was primarily applied to research on heavy rainfall to the study of dry intrusion. The new dry intrusion parameter is used to analyze the isentropic evolution of dry intrusion during the rainfall event. The results show that this parameter can better quantify the intensity of dry intrusion and diagnose its evolution shown in satellite infrared and water vapor imageries. It is found that dry intrusion maintains during the rainfall period. The intensity of precipitation increases with the increasing dry intrusion, which has pushed the rainy region southeastward. From the results on the isentropic surface and the corresponding isobaric surface, it is inferred that the analyses of dry intrusion on both surfaces are consistent with each other. The isentropic analysis of dry intrusion reveals that cold and dry air at the upper level overruns that in the lower troposphere where moist and warm air is located. Thus, potential instability is built up in the vertical direction, which favors the occurrence of precipitation. In practice, we may identify dry intrusion regions by tracking strong signals of the dry intrusion parameter, and further identify the instability near the dry intrusion regions. This will aid in improving the accuracy of precipitation forecast.
文摘This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.
文摘The Brisbane Tropical Cyclone Warning Centre has used two forms of a thermal advection diagnostic to identify relatively large areas of isentropic ascent and descent for many years. When the thermodynamic conditions are favourable the ascent regions are correlated with significant outbreaks of convection that produce heavy rainfall. The diagnostic is based on the relationship between geostrophic winds that turn with height and flow perpendicular to thickness contours. As the relationship is also valid for the more general case of gradient winds, the diagnostic, in theory, should be useful for most heavy-rain-bearing tropical systems. A climatology of rainfall rate with one form of the diagnostic is presented at two Queensland locations(one tropical and one subtropical) that demonstrates a clear relationship between the isentropic ascent wind distribution and heavy to extreme rainfall.The diagnostics applied to numerical weather prediction models are valuable forecast tools as they identify heavy rainfall threat regions within which the extreme rain is likely to fall, whereas the rainfall from the same models is often under predicted or has large location errors. Applied to tropical lows and tropical cyclones the diagnostics have been used successfully to forecast tropical cyclone formation and rapid intensification and decay. Examples of such intensification and decay from around the world are presented, as well as a climatology of the diagnostic applied to intensifying tropical cyclones in the Australian region.
基金the National Natural Science Foundation of China(Nos.10401019,10701011,10541001)
文摘The semiclassical limit in the transient quantum drift-diffusion equations with isentropic pressure in one space dimension is rigorously proved. The equations are supplemented with homogeneous Neumann boundary conditions. It is shown that the semiclassical limit of this solution solves the classical drift-diffusion model. In the meanwhile, the global existence of weak solutions is proved.
文摘The aims of this paper are to discuss global existence and uniqueness of strong solution for a class of isentropic compressible navier-Stokes equations with non-Newtonian in one-dimensional bounded intervals. We prove two global existence results on strong solutions of isentropic compressible Navier-Stokes equations. The first result shows only the existence. And the second one shows the existence and uniqueness result based on the first result, but the uniqueness requires some compatibility condition.
文摘In this paper, the authors consider the inverse piston problem for the system of one-dimensional isentropic flow and obtain that, under suitable conditions, the piston velocity can be uniquely determined by the initial state of the gas on the right side of the piston and the position of the forward shock.