The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding pe...The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.展开更多
In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The co...In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The continuity equation was discretized with the finitevolume method. And the momentum equations were differently simplified and discretized for differentcases. A method of ''special passage'' was proposed to deal with small-scale rivers and open channels.The urban drainage system was simplified and simulated in the model. The method of ''open slot'' wasapplied to coordinate the alternate calculation of open channel flow and pressure flow in drainagepipes. The model has been applied in Tianjin City and the verification is quite satisfactory.展开更多
Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent...Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.展开更多
基金Parts of this work were supported by the National Science and Technology Major Projects (2011ZX05009-002, 2011ZX05009–006)the Fundamental Research Funds for the Central Universities, the Project-sponsored by SRF for ROCS, SEM, and the joint research on "Investigation of Mathematical Models and Their Applications for Oil, Water and CO2 Flow in Reservoirs" between Colorado School of Mines, U.S.A and PetroChina Research Institute of Petroleum Exploration & Development (RIPED), CNPC, China
文摘The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.
文摘In this paper, a mathematical model for the urban rainstorm water logging wasestablished on the basis of one- and two-dimensional unsteady flow theory and the technique ofnon-structural irregular grid division. The continuity equation was discretized with the finitevolume method. And the momentum equations were differently simplified and discretized for differentcases. A method of ''special passage'' was proposed to deal with small-scale rivers and open channels.The urban drainage system was simplified and simulated in the model. The method of ''open slot'' wasapplied to coordinate the alternate calculation of open channel flow and pressure flow in drainagepipes. The model has been applied in Tianjin City and the verification is quite satisfactory.
基金financial support for this work contributed by the National Key Research and Development Program of China(Grants Nos.2016YFC0600101,2016YFC0600201 and 2016YFC0600302)the National Natural Science Foundation of China(Grants Nos.41522401 and 41474068)
文摘Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.