The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures ...The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures have been studied.It is found that Co,Ga can raise the Curie temperature of the compounds.The initial decomposition temperatures cannot be raised significantly by all the studied elements except Co.The result contradicts the formation enthalpy consideration.The final decomposition tempera- tures can be raised by all of the substitution elements.The effects of atmospheres on their decomposition be- havior were also studied.The results show that oxidation is the major reason for magnetic deterioration of the powder heated in air.Compared with nitrogen atmosphere,argon or vacuum helps to delay the decompo- sition of the compounds.展开更多
Despite the significant progress in the fabrication of advanced electrode materials,complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions,morphol...Despite the significant progress in the fabrication of advanced electrode materials,complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions,morphologies,and chemistries.Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species,we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration,composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles(Fe2N@N-CFBs).In the resultant heterostructure,the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well connected by the long-range carbon nanofiber framework.This not only provides direct and continuous conductive pathways to facilitate electron/ion transport,but also helps cushion the volume expansion of the encapsulated Fe2N to preserve the electrode microstructure.Considering its unique structural characteristics,Fe2N@N-CFBs as an advanced anode material exhibits remarkable electrochemical performances for lithium-and potassium-ion batteries.Moreover,this bio-derived structural strategy can pave the way for novel low-cost and high-efficiency syntheses of metal-nitride/carbon nanofiber heterostructures for potential applications in energy-related fields and beyond.展开更多
文摘The effects of the partial substitution of element M(M=Cr,V,Mn,x=0.05;Zr,Ga,x=0.017; Si,x=0.15;Co,x=0.10)for Fe in samarium-iron-nitride Sm_2(Fe_(1-x)M_x)_(17)N_y compounds on their stabilities and Curie temperatures have been studied.It is found that Co,Ga can raise the Curie temperature of the compounds.The initial decomposition temperatures cannot be raised significantly by all the studied elements except Co.The result contradicts the formation enthalpy consideration.The final decomposition tempera- tures can be raised by all of the substitution elements.The effects of atmospheres on their decomposition be- havior were also studied.The results show that oxidation is the major reason for magnetic deterioration of the powder heated in air.Compared with nitrogen atmosphere,argon or vacuum helps to delay the decompo- sition of the compounds.
基金financial support from the National Natural Science Foundation of China(21878192,51502180)the Fundamental Research Funds for the Central Universities(2016SCU04A18)+1 种基金the 1000 Talents Program of Sichuan Province,the Sichuan Province Science and Technology Support Program(2014GZ0093)the Australian Research Council(DP160102627).
文摘Despite the significant progress in the fabrication of advanced electrode materials,complex control strategies and tedious processing are often involved for most targeted materials to tailor their compositions,morphologies,and chemistries.Inspired by the unique geometric structures of natural biomacromolecules together with their high affinities for metal species,we propose the use of skin collagen fibers for the template crafting of a novel multicore-shell Fe2N-carbon framework anode configuration,composed of hierarchical N-doped carbon nanofiber bundles firmly embedded with Fe2N nanoparticles(Fe2N@N-CFBs).In the resultant heterostructure,the Fe2N nanoparticles firmly confined inside the carbon shells are spatially isolated but electronically well connected by the long-range carbon nanofiber framework.This not only provides direct and continuous conductive pathways to facilitate electron/ion transport,but also helps cushion the volume expansion of the encapsulated Fe2N to preserve the electrode microstructure.Considering its unique structural characteristics,Fe2N@N-CFBs as an advanced anode material exhibits remarkable electrochemical performances for lithium-and potassium-ion batteries.Moreover,this bio-derived structural strategy can pave the way for novel low-cost and high-efficiency syntheses of metal-nitride/carbon nanofiber heterostructures for potential applications in energy-related fields and beyond.