The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammon...The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, A EO9 α =0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.展开更多
In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them ...In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.展开更多
Hydr hobie一lipophilic interactions(HLI)will start to bri about the formationof simple aggregates(Ag,s)and eoa egates(CoAg,s)from neutral organie moleeuleswhich possess at least onefl ble chain with more than seven eH...Hydr hobie一lipophilic interactions(HLI)will start to bri about the formationof simple aggregates(Ag,s)and eoa egates(CoAg,s)from neutral organie moleeuleswhich possess at least onefl ble chain with more than seven eHZ grou ,1,2 at theeritieala egate eoncentration展开更多
基金Project (No. 2004C31058) supported by the National NaturalScience Foundation of China
文摘The interaction in two mixtures of a nonionic surfactant AEO9 (C12H25O(CH2CH2O)9H) and different ionic surfactants was investigated. The two mixtures were AEO9/sodium dodecyl sulfate (SDS) and AEO9/cetyltrimethylammonium bromide (CTAB) at molar fraction of AEO9, A EO9 α =0.5. The surface properties of the surfactants, critical micelle concentration (CMC), effectiveness of surface tension reduction (γCMC), maximum surface excess concentration (Γmax) and minimum area per molecule at the air/solution interface (Amin) were determined for both individual surfactants and their mixtures. The significant deviations from ideal behavior (attractive interactions) of the nonionic/ionic surfactant mixtures were determined. Mixtures of both AEO9/SDS and AEO9/CTAB exhibited synergism in surface tension reduction efficiency and mixed micelle formation, but neither exhibited synergism in surface tension reduction effectiveness.
文摘In the last few decades numbers of review and research articles have been published on niosomes. This shows the relevant interest of academias & researchers in niosomes because of the advantages sponsored by them over other colloidal drug delivery systems. Niosomes formation occurs when non-ionic surfactant vesicles assemble themselves. Various antineoplastic agents are used in chemotherapy, but they have some drawbacks that these agents cause cell death in normal tissues as well. There are two approaches to overcome this limitation. First, to modify the structure of existing drugs, but this will not possible because it changes the properties of drugs. Second, the development of nano-carriers like liposomes, dendrimers, nanoparticles, niosomes et al. Among all, niosomes (non-ionic surfactant vesicles) have more advantages besides all nano-carriers. Drugs either hydrophilic in nature or hydrophobic in nature, both can be incorporated in niosomes. And by embedding specific ligands over vesicular surface enables us to target the drug to specific cancer cells.
文摘Hydr hobie一lipophilic interactions(HLI)will start to bri about the formationof simple aggregates(Ag,s)and eoa egates(CoAg,s)from neutral organie moleeuleswhich possess at least onefl ble chain with more than seven eHZ grou ,1,2 at theeritieala egate eoncentration