Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of met...The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant-abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6AI-4V) and cobalt-chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n = 6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P〈 0.05). Titanium was the highest element to be released regardless of abutment size or connection (P〈0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant-abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant-abutment couples.展开更多
Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and,more recently,in soft tissue repair and wound healing.In this study we produced mesoporous bioactive glass na...Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and,more recently,in soft tissue repair and wound healing.In this study we produced mesoporous bioactive glass nanoparticles(MBGNs)based on the SiO2-CaO system.With the intention of adding subsidiary biological function,MBGNs were doped with Zn2+ions.Zn-MBGNs with 8 mol%ZnO content were synthesized via microemulsion assisted sol-gel method.The synthesized particles were homogeneous in shape and size.They exhibited spherical shape,good dispersity,and a size of 130±10 nm.The addition of zinc precursors did not affect the morphology of particles,while their specific surface area increased in comparison to MBGNs.The presence of Zn2+ions inhibited the formation of hydroxycarbonate apatite(HCAp)on the particles after immersion in simulated body fluid(SBF).No formation of HCAp crystals on the surface of Zn-MBGNs could be observed after 14 days of immersion.Interestingly,powders containing relatively high amount of zinc released Zn2+ions in low concentration(0.6-1.2 mg L^−1)but in a sustained manner.This releasing feature enables Zn-MBGNs to avoid potentially toxic levels of Zn2+ions,indeed Zn-MBGNs were seen to improve the differentiation of osteoblast-like cells(MG-63).Additionally,Zn-MBGNs showed higher ability to adsorb proteins in comparison to MBGNs,which could indicate a favourable later attachment of cells.Due to their advantageous morphological and physiochemical properties,Zn-MBGNs show great potential as bioactive fillers or drug delivery systems in a variety of applications including bone regeneration and wound healing.展开更多
In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative mea...In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative measurements of the combustion duration,flame height,combustion temperature,heat release rate,and total heat release.The results indicated that LMO batteries exhibited higher combustion temperatures of 600–700°C,flame heights of 70–75 cm,a significantly higher heat release rate of40.1 k W(12 Ah),and a total heat release of 1.04 MJ(12 Ah)compared to LFP batteries with the same capacity.Based on these experimental results,a normalized total heat release(NORTHR)parameter was proposed,demonstrating good universality for batteries with different capacities.Utilizing this parameter,quantitative calculations and optimization of the extinguishing agent dosage were conducted for fires involving these two types of batteries,and the method was validated by extinguishing fires for these two types of battery packs with water-based extinguishing fluids.展开更多
Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S.aureus and E.coli and thus has potential application as dental materials and orthopedic application.In this paper, the corrosion ...Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S.aureus and E.coli and thus has potential application as dental materials and orthopedic application.In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti(commercially pure titanium) by electrochemical technology and immersion experiment.Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8+0.2 F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cpTi.Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8+0.2 F and saliva-pH3.5 solutions.Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F^- and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy.The corroded surface morphology was observed by scanning electron microscopy(SEM), and the roughness was tested in the end.The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.展开更多
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金funded by a scholarship from King Saud University, Kingdom of Saudi Arabia
文摘The improved peri-implant bone response demonstrated by platform switching may be the result of reduced amounts of metal ions released to the surrounding tissues. The aim of this study was to compare the levels of metal ions released from platform-matched and platform-switched implant-abutment couples as a result of accelerated corrosion. Thirty-six titanium alloy (Ti-6AI-4V) and cobalt-chrome alloy abutments were coupled with titanium cylinders forming either platform-switched or platform-matched groups (n = 6). In addition, 18 unconnected samples served as controls. The specimens were subjected to accelerated corrosion by static immersion in 1% lactic acid for 1 week. The amount of metal ions ion of each test tube was measured using inductively coupled plasma mass spectrometry. Scanning electron microscope (SEM) images and energy dispersive spectroscopy X-ray analyses were performed pre- and post-immersion to assess corrosion at the interface. The platform-matched groups demonstrated higher ion release for vanadium, aluminium, cobalt, chrome, and molybdenum compared with the platform-switched groups (P〈 0.05). Titanium was the highest element to be released regardless of abutment size or connection (P〈0.05). SEM images showed pitting corrosion prominent on the outer borders of the implant and abutment platform surfaces. In conclusion, implant-abutment couples underwent an active corrosion process resulting in metal ions release into the surrounding environment. The highest amount of metal ions released was recorded for the platform-matched groups, suggesting that platform-switching concept has a positive effect in reducing the levels of metal ion release from the implant-abutment couples.
基金This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 739566 and in the frame of the project Centre for Functional and Surface Functionalized Glass(CEGLASS)ITMS code is 313011R453,operational program Research and innovation,co-funded from European Regional Development FundThe financial support of this work by the grant VEGA 2/0026/17 and APVV 15/0014 is also gratefully acknowledged.
文摘Mesoporous bioactive glasses have been widely investigated for applications in bone tissue regeneration and,more recently,in soft tissue repair and wound healing.In this study we produced mesoporous bioactive glass nanoparticles(MBGNs)based on the SiO2-CaO system.With the intention of adding subsidiary biological function,MBGNs were doped with Zn2+ions.Zn-MBGNs with 8 mol%ZnO content were synthesized via microemulsion assisted sol-gel method.The synthesized particles were homogeneous in shape and size.They exhibited spherical shape,good dispersity,and a size of 130±10 nm.The addition of zinc precursors did not affect the morphology of particles,while their specific surface area increased in comparison to MBGNs.The presence of Zn2+ions inhibited the formation of hydroxycarbonate apatite(HCAp)on the particles after immersion in simulated body fluid(SBF).No formation of HCAp crystals on the surface of Zn-MBGNs could be observed after 14 days of immersion.Interestingly,powders containing relatively high amount of zinc released Zn2+ions in low concentration(0.6-1.2 mg L^−1)but in a sustained manner.This releasing feature enables Zn-MBGNs to avoid potentially toxic levels of Zn2+ions,indeed Zn-MBGNs were seen to improve the differentiation of osteoblast-like cells(MG-63).Additionally,Zn-MBGNs showed higher ability to adsorb proteins in comparison to MBGNs,which could indicate a favourable later attachment of cells.Due to their advantageous morphological and physiochemical properties,Zn-MBGNs show great potential as bioactive fillers or drug delivery systems in a variety of applications including bone regeneration and wound healing.
基金supported by the New Energy Vehicle Power Battery Life Cycle Testing and Verification Public Service Platform Project[2022-235-224]the Beijing Science and Technology Planning Project[Z221100005222004]+1 种基金the Key Technologies Research and Development Program[2021YFB2012504]the Beijing Goldenbridge Project[ZZ2023002]。
文摘In this study,a detailed analysis of the combustion behaviors of the lithium iron phosphate(LFP)and lithium manganese oxide(LMO)batteries used in electric bicycles was conducted.This research included quantitative measurements of the combustion duration,flame height,combustion temperature,heat release rate,and total heat release.The results indicated that LMO batteries exhibited higher combustion temperatures of 600–700°C,flame heights of 70–75 cm,a significantly higher heat release rate of40.1 k W(12 Ah),and a total heat release of 1.04 MJ(12 Ah)compared to LFP batteries with the same capacity.Based on these experimental results,a normalized total heat release(NORTHR)parameter was proposed,demonstrating good universality for batteries with different capacities.Utilizing this parameter,quantitative calculations and optimization of the extinguishing agent dosage were conducted for fires involving these two types of batteries,and the method was validated by extinguishing fires for these two types of battery packs with water-based extinguishing fluids.
基金financially supported by the National Natural Science Foundation of China (Nos.81071262 and 31271024)the Funding from Northeastern University, China (Nos.N141008001 and LZ2014018)Beijing Municipal Natural Science Foundation (No.7161001)
文摘Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S.aureus and E.coli and thus has potential application as dental materials and orthopedic application.In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti(commercially pure titanium) by electrochemical technology and immersion experiment.Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8+0.2 F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cpTi.Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8+0.2 F and saliva-pH3.5 solutions.Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F^- and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy.The corroded surface morphology was observed by scanning electron microscopy(SEM), and the roughness was tested in the end.The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.