The internal Zappa-Szép products emerge when a semigroup has the property that every element has a unique decomposition as a product of elements from two given subsemigroups. The external version constructed from...The internal Zappa-Szép products emerge when a semigroup has the property that every element has a unique decomposition as a product of elements from two given subsemigroups. The external version constructed from actions of two semigroups on one another satisfying axiom derived by G. Zappa. We illustrate the correspondence between the two versions internal and the external of Zappa-Szép products of semigroups. We consider the structure of the internal Zappa-Szép product as an enlargement. We show how rectangular band can be described as the Zappa-Szép product of a left-zero semigroup and a right-zero semigroup. We find necessary and sufficient conditions for the Zappa-Szép product of regular semigroups to again be regular, and necessary conditions for the Zappa-Szép product of inverse semigroups to again be inverse. We generalize the Billhardt λ-semidirect product to the Zappa-Szép product of a semilattice E and a group G by constructing an inductive groupoid.展开更多
The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regu...The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regular band B together with a mapping which maps the semigroupΓinto the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups. We shall also provide a constructed example for the L*-inverse semigroups by using the left wreath products.展开更多
文摘The internal Zappa-Szép products emerge when a semigroup has the property that every element has a unique decomposition as a product of elements from two given subsemigroups. The external version constructed from actions of two semigroups on one another satisfying axiom derived by G. Zappa. We illustrate the correspondence between the two versions internal and the external of Zappa-Szép products of semigroups. We consider the structure of the internal Zappa-Szép product as an enlargement. We show how rectangular band can be described as the Zappa-Szép product of a left-zero semigroup and a right-zero semigroup. We find necessary and sufficient conditions for the Zappa-Szép product of regular semigroups to again be regular, and necessary conditions for the Zappa-Szép product of inverse semigroups to again be inverse. We generalize the Billhardt λ-semidirect product to the Zappa-Szép product of a semilattice E and a group G by constructing an inductive groupoid.
文摘The concepts of L*-inverse semigroups and left wreath products of semigroups are introduced. It is shown that the L*-inverse semigroup can be described as the left wreath product of a type A semigroupΓand a left regular band B together with a mapping which maps the semigroupΓinto the endomorphism semigroup End(B). This result generalizes the structure theorem of Yamada for the left inverse semigroups in the class of regular semigroups. We shall also provide a constructed example for the L*-inverse semigroups by using the left wreath products.