Let (P, Q) be a C1 vector field defined in an open subset U IR2. We call inverse integrating factor a C1 solution V(x, y) of the equation . In previous works it has been shown that this function plays an important ro...Let (P, Q) be a C1 vector field defined in an open subset U IR2. We call inverse integrating factor a C1 solution V(x, y) of the equation . In previous works it has been shown that this function plays an important role in the problem of the center and in the determination of limit cycles. In this paper we obtain necessary conditions for a polynomial vector field (P, Q) to have a polynomial inverse integrating factor.展开更多
基金the DGICYT grant, number PB96-1153 The third author is partially supported by the University of Lleida Project P98-207.
文摘Let (P, Q) be a C1 vector field defined in an open subset U IR2. We call inverse integrating factor a C1 solution V(x, y) of the equation . In previous works it has been shown that this function plays an important role in the problem of the center and in the determination of limit cycles. In this paper we obtain necessary conditions for a polynomial vector field (P, Q) to have a polynomial inverse integrating factor.